Share This Article:

About Holographic (Interferometric) Approach to the Primary Visual Perception

Abstract Full-Text HTML Download Download as PDF (Size:1907KB) PP. 165-177
DOI: 10.4236/ojbiphy.2013.33020    2,869 Downloads   6,355 Views   Citations
Author(s)    Leave a comment

ABSTRACT

The discussed physical model of the primary visual perception is based on the joint consideration of the structural features of the retina and its functioning, namely, inversion of the retina, the presence of micro-oscillations (tremor), high rate of reaction of photoisomerization and its spatial-time coherence. The above model indicates the existence of significant forward light scattering in the layers of the retina. The existence of micro-oscillations and partial time coherence of the first stage of photoisomerization reaction allows proposing a mechanism of image restoration based on the principles of holographic speckle interferometry.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

V. Svet, "About Holographic (Interferometric) Approach to the Primary Visual Perception," Open Journal of Biophysics, Vol. 3 No. 3, 2013, pp. 165-177. doi: 10.4236/ojbiphy.2013.33020.

References

[1] H. von. Helmholz, “Helmholtz’s Treatise on Physiological Optics. Translated From the Third German Edition. Volume III,” New York: Optical Society of America, 1925.
[2] S. R. Cajal, “The Structure of the Retina,” Charles C. Thomas, Springfield, 1972.
[3] J. Beuthan, O. Minet, J. Helfman and G. Muller, “The Spatial Variation of the Refractive Index in Biological Cells,” Physics in Medicine and Biology, Vol. 41, No. 3, 1996, pp. 369-382. doi:10.1088/0031-9155/41/3/002
[4] R. Carpenter, “Movements of the Eyes,” 2nd Edition, Pion, London, 1988.
[5] H. Kandori1, Y. Shichida and T. Yoshizawa, “Photoisomerization in Rhodopsin,” Biochemistry, Vol. 66, No. 11, 2001, pp. 1197-1209.
[6] M. A. El-Sayed, I. Tanaka and Y. Molin, “Ultrafast Processes in Chemistry and Photobiology,” Blackwell Science, Hoboken, 1995.
[7] R. Drezek, A. Dunn and R. Richards-Rortum, “Light Scattering from Cells: Finite Difference Time-Domain Simulations and Goniometric Measurements,” Applied Optics, Vol. 38, No. 16, 1999, pp. 3651-3661. doi:10.1364/AO.38.003651
[8] A. Dunn, C. Smithpeter, A. Welch and R. Richards-Rortum “Finite-Difference Time-Domain Simulation of Light Scattering from Single Cells,” Journal of Biomedical Optics, Vol. 2, No. 3, 1997, pp. 262-266. doi:10.1117/12.275219
[9] D. Sardar, R. Yow, A. Tsin and R. Sardar, “Optical Scattering, Absorption, and Polarization of Healthy and Neovascularized Human Retinal Tissues,” Journal of Biomedical Optics, Vol. 10, No. 5, 2005, pp. 501-512. doi:10.1117/1.2065867
[10] S. Yin, T. Gurder, T. Thomas and K. Kolanda, “Light Scatter Causes the Grayness of Detached Retina,” Archives of Ophthalmology, Vol. 121, No. 7, 2003, pp. 1002-1008.
[11] H. Hammer, D. Schweitzer, E. Thamm, A. Kolb and J. Strobel, “Scattering Properties of the Retina and the Choroids Determined from OCT-A-Scans,” International Ophthalmology, Vol. 23, No. 4-6, 2001, pp. 291-295.
[12] S. Abdallah, “Finite-Difference Time-Domain Simulations of light scattering from Retinal Photoreceptors,” Ph.D. Thesis, University of Waterloo, Ontario, 2007.
[13] V. D. Svet, “About Possible Principles of Image Transformation in Inverted Eye Retina,” Doklady Physics, Vol. 409, No. 7, 2006, pp. 1-5.
[14] V. D. Svet and V. I. Gelfgat, “About Possible Light Scattering in the Inverted Eye Retina. Actual Problems of Modern Science,” Sputnik Publishing, Moscow, 2007, pp. 23-35.
[15] V. D. Svet and A. M. Khazen, “About the Formation of an Image in the Inverted Retina of the Eye,” Biophysics, Vol. 54, No. 2, 2009, pp. 193-203.
[16] M. Born and E. Wolf, “Principles of Optics,” 6th Edition , Pergamon Press, Oxford, 1993
[17] K. Franze, J. Grosche, S. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis. A. Reichenbach, J. Guck and P. Flechhsig, “Muller Cells are Living Optical Fibers in the Vertebrate Retina,” Proceedings of the National Academy of Sciences, Vol. 104, No. 20, 2007, pp. 8287-8292. doi:10.1073/pnas.0611180104
[18] B. Vohnsen, I. Iglesias and P. Artal, “Guided Light and Diffraction Model of Human-Eye Photoreceptors,” Journal of the Optical Society of America A: Optics, Image Science, and Vision, Vol. 22, No. 11, 2005, pp. 2318-2328. doi:10.1364/JOSAA.22.002318
[19] R. W. Ditchbern and B. L. Ginsburg, “Vision with a Stabilized Retinal Image,” Nature, Vol. 170, No. 4314, 1952, pp. 36-37. doi:10.1038/170036a0
[20] L. A. Riggs and F. Ratliff, “The Effects of Counteracting the Normal Movements of the Eye,” Journal of the Optical Society of America A, Vol. 42, 1952, pp. 872-873.
[21] A. L. Yarbus, “The Role of Eye Movements in Vision Process,” Nauka, Moscow, 1965.
[22] S. Martinez-Conde, S. L. Macknik, D. H. Hubel, “The Function of Bursts of Spikes during the Visual Fixation in the Awake Primate Lateral Geniculate Nucleus and Primary Visual Cortex,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 99, No. 21, 2002, pp. 13920-13925. doi:10.1073/pnas.212500599
[23] S. Martinez-Conde, S. L. Macknik and D. H. Hubel, “The Role of Fixation Eye Movements in Visual Perception,” Nature Reviews Neuroscience, Vol. 5, 2004, pp. 229-240. doi:10.1038/nrn1348
[24] D. Coppola and D. Purves, “The Extraordinary Rapid Disappearance of Entoptic Images,” Proceedings of the National Academy of Sciences, Vol. 93, No. 15, 1996, pp. 8001-8004. doi:10.1073/pnas.93.15.8001
[25] G. M. Agadjanyan, “Role of Tremor and Shift in a Vision Process,” Doklady Biological Sciences, Vol. 370, No. 10-13, 1999, pp. 455-459.
[26] O. A. Smitienko, I. V. Shaelaev, F. E. Gostev, T. B. Feldman, V. A. Nadtochenko, O. M. Sarkisov and M. A. Ostrovsky, “Coherent Processes at Formation of Primary Products of Photolysis of a Visual Pigment Rodophsine,” Doklady Biochemistry and Biophysics, Vol. 421, 2008, pp. 277-281.
[27] S. V. Kravkov, “Eye and Its Functioning: Psychophysiology of Vision and Hygiene of Illumination,” Nauka, Moscow, 1950.
[28] D. Bohm, “Wholeness and the Implicate Order,” Routledge and Kegan Paul, London, 1980.
[29] K. Pribram, “Holonomy and Structure in the Organization of Perception,” Stanford University, Stanford, 1976.
[30] K. Pribram, “Languages of the Brain,” Plenum Press, New York, 1989.
[31] V. D. Glezer, “Vision and Thinking,” Nauka, Leningrad, 1985.
[32] V. D. Glezer, “Mechanisms of Recognition of Imaging Patterns,” Nauka, Leningrad, 1966.
[33] D. Gabor, “Holographic Model of Temporal Recall,” Nature, Vol. 217, No. 5128, 1968, pp. 1288-1289.
[34] D. H. Hubel and T. N. Wiesel, “Receptive Fields and Functional Architecture in Two Non-Striate Visual Areas (18 and 19) of the Cat,” Journal of Neurophysiology, Vol. 28, 1965, pp. 229-289.
[35] N. Lauinger, “The Relationship between Brightness, Hue and Saturation When the Inverted Human Retina is Interpreted as a Cellular Diffractive 3D Chip,” SPIE Proceedings, Intelligent Robots and Computer Vision, Vol. 2588, 1995, pp. 208-232.
[36] N. Lauringer, “Inverted Retina of the Human Eye: A Trichromatic 4D Space-Time Optical Correlator,” SPIE Proceedings, Intelligent Robots and Computer Vision, Vol. 2904, 1996, pp. 344-360.
[37] V. P. Titar and O. V. Shpachenko, “Holographic Model of Physiological Optics—New Approach in Design of Information Systems,” Interdepartmental Collection on Radio Technique, Vol. 116, No. 2, 2000, pp. 35-39.
[38] V. P .Titar, T. V. Bogdanova and M. T. Torkatyuk, “Illusions of Vision: Holographic Interpretation Models,” Optics and Spectroscopy, Vol. 93, No. 4, 2002, pp. 686-694.
[39] G. C. Huth, “A New Explanation for Light Interaction with the Retina of the Eye Based on Nanostructural Geometry: Rethinking the Vision Process,” 2009. www.ghuth.com
[40] F. Roddier, “Adaptive Optics in Astronomy,” University Press, Cambridge, 1999.
[41] V. D. Svet, T. V. Kondratieva and N. V. Zuikova, “Trajectory Estimation of Moving Target in the Medium with a Strong Scattering,” Acoustical Imaging, Vol. 23, 1997, pp. 555-562. doi:10.1007/978-1-4419-8588-0_87
[42] V. D. Svet, T. V. Kondratieva and N. V. Zuikova, “Visualization of Blood Flow by the Method of Ultrasound Speckle-Interferometry,” Acoustical Physics, Vol. 47, No. 5, 2001, pp. 664-670.
[43] V. D. Svet, T. V. Kondratieva and N. V. Zuikova, “Reconstruction of the Acoustic Images of Dynamic Objects Located under a Non-Uniform Layer,” Acoustical Physics, Vol. 48, No. 6, 2002, pp. 779-789.
[44] B. B. Gorbatenko, V. P. Ryabukho and L. A. Maksimova, “Reconstruction of Spatial Phase Distribution in Diffracted Speckle Field and Restoration of Image on Intensity,” Optics and Spectroscopy, Vol. 101, No. 5, 2006, pp. 811-815. doi:10.1134/S0030400X06110233
[45] I. M. Bel’dyugin, I. G. Zubarev and S. I. Mikhailov, “Image Restoration of Object on Its Speckle Structure,” Quantum Electronics, Vol. 31, No. 6, 2001, pp. 539-542. doi:10.1070/QE2001v031n06ABEH001997

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.