Fractional Versions of the Fundamental Theorem of Calculus

Abstract

The concept of fractional integral in the Riemann-Liouville, Liouville, Weyl and Riesz sense is presented. Some properties involving the particular Riemann-Liouville integral are mentioned. By means of this concept we present the fractional derivatives, specifically, the Riemann-Liouville, Liouville, Caputo, Weyl and Riesz versions are discussed. The so-called fundamental theorem of fractional calculus is presented and discussed in all these different versions.

Share and Cite:

E. Grigoletto and E. Oliveira, "Fractional Versions of the Fundamental Theorem of Calculus," Applied Mathematics, Vol. 4 No. 7A, 2013, pp. 23-33. doi: 10.4236/am.2013.47A006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] [1] K. S. Miller and B. Ross, “An Introduction to the Fractional Calculus and Fractional Differential Equations,” John Wiley & Sons, Inc., New York, 1993.
[2] K. B. Oldham and J. Spanier, “The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order,” Academic Press, New York, 1974.
[3] R. L. Bagley and P. J. Torvik, “A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity,” Journal of Rheology, Vol. 27, No. 3, 1983, pp. 201-210. doi:10.1122/1.549724
[4] J. A. Tenreiro Machado, V. Kiryakova and F. Mainardi, “A Poster about the Recent History of Fractional Calculus,” Fractional Calculus & Applied Analysis, Vol. 13, No. 3, 2010, pp. 329-334.
[5] J. A. Tenreiro Machado, V. Kiryakova and F. Mainardi, “A Poster about the Old History of Fractional Calculus,” Fractional Calculus & Applied Analysis, Vol. 13, No. 4, 2010, pp. 447-454.
[6] J. A. Tenreiro Machado, V. Kiryakova and F. Mainardi, “Recent History of Fractional Calculus,” Communications in Nonlinear Science and Numerical Simulation, Vol. 16, No. 3, 2011, pp. 1140-1153. doi:10.1016/j.cnsns.2010.05.027
[7] K. Diethelm, “The Analysis of Fractional Differential Equations,” Springer Verlag, Berlin, Heidelberg, 2010. doi:10.1007/978-3-642-14574-2
[8] R. Hilfer, “Applications of Fractional Calculus in Physics,” World Scientific, Singapore City, 2000.
[9] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, “Theory and Applications of Fractional Differential Equations,” Elsevier, Amsterdam, 2006.
[10] I. Podlubny, “Fractional Differential Equations,” Academic Press, San Diego, 1999.
[11] S. G. Samko, A. A. Kilbas and O. I. Marichev, “Fractional ntegrals and Derivatives: Theory and Applications,” Gordon and Breach Science Publishers, Amsterdam, 1993.
[12] V. E. Tarasov, “Fractional Dynamics, Applications of Fractional Calculus to Dynamics of Particles, Fields and Media,” Springer, Heidelberg, 2010.
[13] V. E. Tarasov, “Fractional Vector Calculus and Fractional Maxwell’s Equations,” Annals of Physics, Vol. 323, No. 11, 2008, pp. 2756-2778. doi:10.1016/j.aop.2008.04.005
[14] H. Vic Dannon, “The Fundamental Theorem of the Fractional Calculus and the Meaning of Fractional Derivatives,” Gauge Institute Journal, Vol. 5, No. 1, 2009, pp. 1-26.
[15] N. Heymans and I. Podlubny, “Physical Interpretation of Initial Conditions for Fractional Differential Equations with Riemann-Liouville Fractional Derivative,” Rheologica Acta, Vol. 45, No. 5, 2006, pp. 765-772. doi:10.1007/s00397-005-0043-5
[16] I. Podlubny, “Geometric and Physical Interpretation of Fractional Integral and Fractional Differentiation,” Journal of Fractional Calculus & Applied Analysis, Vol. 5, No. 4, 2002, pp. 367-386.
[17] A. Cabada and G. Wang, “Positive Solutions of Nonlinear Fractional Differential Equations with Integral Boundary Value Conditions,” Journal of Mathematical Analysis and Applications, Vol. 389, No. 1, 2012, pp. 403-411. doi:10.1016/j.jmaa.2011.11.065
[18] R. Figueiredo Camargo, “Fractional Calculus and Applications (in Portuguese)” Doctoral Thesis, UNICAMP, Campinas, 2009.
[19] J. A. Tenreiro Machado, “Discrete-Time Fractional-Order Controllers,” Journal of Fractional Calculus & Applied Analysis, Vol. 4, No. 1, 2001, pp. 47-66.
[20] R. Figueiredo Camargo, E. Capelas de Oliveira and J. Vaz Jr., “On the Generalized Mittag-Leffler Function and Its Application in a Fractional Telegraph Equation,” Mathematical Physsics, Analysis & Geometry, Vol. 15, No. 1, 2012, pp. 1-16. doi:10.1007/s11040-011-9100-8
[21] F. Silva Costa and E. Capelas de Oliveira, “Fractional Wave-Diffusion Equation with Periodic Conditions,” Journal of Mathematical Physics, Vol. 53, 2012, Article ID: 123520. doi:10.1063/1.4769270
[22] H. Jafari and S. Momani, “Solving Fractional Diffusion and wave Equations by Modified Homotopy Perturbation Method,” Physics Letters A, Vol. 370, No. 5-6, 2007, pp. 388-396. doi:10.1016/j.physleta.2007.05.118
[23] E. Contharteze Grigoletto, “Fractional Differential Equations and the Mittag-Leffler Functions (in Portuguese),” Ph.D. Thesis, UNICAMP, Campinas, to Appear.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.