Share This Article:

Forecast Urban Air Pollution in Mexico City by Using Support Vector Machines: A Kernel Performance Approach

Abstract Full-Text HTML Download Download as PDF (Size:2360KB) PP. 126-135
DOI: 10.4236/ijis.2013.33014    4,193 Downloads   7,843 Views   Citations

ABSTRACT

The development of forecasting models for pollution particles shows a nonlinear dynamic behavior; hence, implementation is a non-trivial process. In the literature, there have been multiple models of particulate pollutants, which use softcomputing techniques and machine learning such as: multilayer perceptrons, neural networks, support vector machines, kernel algorithms, and so on. This paper presents a prediction pollution model using support vector machines and kernel functions, which are: Gaussian, Polynomial and Spline. Finally, the prediction results of ozone (O3), particulate matter (PM10) and nitrogen dioxide (NO2) at Mexico City are presented as a case study using these techniques.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Sotomayor-Olmedo, M. Aceves-Fernández, E. Gorrostieta-Hurtado, C. Pedraza-Ortega, J. Ramos-Arreguín and J. Vargas-Soto, "Forecast Urban Air Pollution in Mexico City by Using Support Vector Machines: A Kernel Performance Approach," International Journal of Intelligence Science, Vol. 3 No. 3, 2013, pp. 126-135. doi: 10.4236/ijis.2013.33014.

References

[1] E. Vega, E. Reyes and G. Sanchez, “Basic Statistics of PM2.5 and PM10 in the Atmosphere of Mexico City,” The Science of the Total Environment, Vol. 287, No. 3, 2002, pp. 167-176. doi:10.1016/S0048-9697(01)00980-9
[2] M. A. Aceves-Fernández, A. Sotomayor-Olmedo, E. Gorrostieta-Hurtado, J. C. Pedraza-Ortega, S. Tovar-Arriaga and J. M. Ramos-Arreguin, “Performance Assessment of Fuzzy Clustering Models Applied to Urban Airborne Pollution,” Proceedings of the 21st International Conference on Electrical Communications, San Andres Cholula, 28 February 2011-2 March 2011, pp. 212-216.
[3] M. Kolehmainen, H. Martikainen, T. Hiltunen and J. Ruuskanen, “Forecasting Air Quality Parameters Using Hybrid Neural Network Modeling,” Environmental Monitoring and Assessment, Vol. 65, No. 1-2, 2000, pp. 277-286. doi:10.1023/A:1006498914708
[4] O. M. Pokrovsky, H. F. Roger and C. N. Kwok, “Fuzzy Logic Approach for Description of Meteorological Impacts on Urban Air Pollution Species: A Hong Kong Case Study,” Computers & Geosciences, Vol. 28, No. 1, 2002, pp. 119-127. doi:10.1016/S0098-3004(01)00020-6
[5] P. Viotti, G. Liuti and P. Di. Genova, “Atmospheric Urban Pollution: Applications of an Artificial Neural Network (ANN) to the City of Perugia,” Ecological Modelling, Vol. 148, No. 1, 2002, pp. 27-46. doi:10.1016/S0304-3800(01)00434-3
[6] C. Giorgio, “Air Quality Prediction in Milan: Feed-Forward Neural Networks, Pruned Neural Networks and Lazy Learning,” Ecological Modelling, Vol. 185, No. 2-4, 2005, pp. 513-529. doi:10.1016/j.ecolmodel.2005.01.008
[7] M. Caselli, L. Trizio, G. de Gennaro and P. Ielpo, “A Simple Feedforward Neural Network for the PM10 Forecasting: Comparison with a Radial Basis Function Network and a Multivariate Linear Regression Model,” Water, Air & Soil Pollution, Vol. 201, No. 1-4, 2009, pp. 365-377. doi:10.1007/s11270-008-9950-2
[8] K. P. Moustris, I. C. Ziomas and A. G. Paliatsos, “3-Day-Ahead Forecasting of Regional Pollution Index for the Pollutants NO2, CO, SO2, and O3 Using Artificial Neural Networks in Athens, Greece,” Water, Air & Soil Pollution, Vol. 209, No. 1-4, 2010, pp. 29-43. doi:10.1007/s11270-009-0179-5
[9] L. A. Diaz-Robles, J. C. Ortega, J. S. Fu, G. D. Reed, J. C. Chow, J. G. Watson and J. A. Moncada-Herrera, “A Hybrid ARIMA and Artificial Neural Networks Model to Forecast Particulate Matter in Urban Areas: The Case of Temuco, Chile,” Atmospheric Environment, Vol. 42, No. 35, 2008, pp. 8331-8340. doi:10.1016/j.atmosenv.2008.07.020
[10] M. M. Hossain, Md. R. Hassan and M. Kirley, “Forecasting Urban Air Pollution Using HMM-Fuzzy Model,” PAKDD’08 Proceedings of the 12th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, 20-23 May 2008, pp. 572-581.
[11] S. Osowski and K. Garanty, “Forecasting of the Daily Meteorological Pollution Using Wavelets and Support Vector Machine,” Engineering Applications of Artificial Intelligence, Vol. 20, No. 6, 2007, pp. 745-755. doi:10.1016/j.engappai.2006.10.008
[12] WHO (World Health Organization), “Environmental Burden of Disease,” No. 5, 2004.
[13] R. F. Phalen, “Introduction to Air Pollution Science: A Public Health Perspective,” 2012.
[14] J. H. Kilabuko, H. Matsuki and S. Nakai, “Air Quality and Acute Respiratory Illness in Biomass Fuel using homes in Bagamoyo, Tanzania,” International Journal of Environmental Research and Public Health, Vol. 4, No. 1, 2007, pp. 39-44. doi:10.3390/ijerph2007010007
[15] Y. L. Leo Lee, W.-H. Wang, C.-W. Lu, Y.-H. Lin and B.-F. Hwang, “Effects of Ambient Air Pollution on Pulmonary Function among Schoolchildren,” International Journal of Hygiene and Environmental Health, Vol. 214, No. 5, 2011, pp. 369-375. doi:10.1016/j.ijheh.2011.05.004
[16] D. Rao and W. Phipatanakul, “Impact of Environmental Controls on Childhood Asthma,” Current Allergy and Asthma Reports, Vol. 11, No. 5, 2011, pp. 414-420. doi:10.1007/s11882-011-0206-7
[17] H. H. Suh, A. Zanobetti, J. Schwartz and B. A. Coull, “Chemical Properties of Air Pollutants and Cause-Specific Hospital Admissions among the Elderly in Atlanta, Georgia,” Environmental Health Perspectives, Vol. 119, No. 10, 2011, pp. 1421-1428. doi:10.1289/ehp.1002646
[18] R. W. Boubel, D. L. Fox, D. B. Turner, A. C. Stern, “Fundamentals of Air Pollution,” 3rd Edition, Academic Press, Waltham, 1994.
[19] Achcar J. A., D. E. Fazioni Sousa, E. R. Rodrigues and T. Guadalupe, “Comparing the Number of Ozone Exceedances in Different Seasons of the Year in Mexico City,” Environmental Modeling and Assessment, Vol. 16, No. 3, 2011, pp. 251-264. doi:10.1007/s10666-010-9245-z
[20] J. Pey, A. Alastuey, X. Querol and S. Rodríguez, “Monitoring of Sources and Atmospheric Processes Controlling Air Quality in an Urban Mediterranean Environment,” Atmospheric Environment, Vol. 44, No. 38, 2010, pp. 4879-4890. doi:10.1016/j.atmosenv.2010.08.034
[21] M. R. O’Neill, D. Loomis and V. H. Borja-Aburto, “Ozone, Area Social Conditions and Mortality in Mexico City,” Environmental Research, Vol. 94, No. 3, 2004, pp. 234-242. doi:10.1016/j.envres.2003.07.002
[22] L. Emberson, M. Ashmore and F. Murray, “Air Pollution Impacts on Crops and Forests: A Global Assessment,” Imperial College Press, London, 2003.
[23] S. S. Ahmad, P. Biiker, L. Emberson and R. Shabbir, “Monitoring Nitrogen Dioxide Levels in Urban Areas in Rawalpindi, Pakistan,” Water, Air & Soil Pollution, Vol. 220, No. 1-4, 2011, pp. 141-150. doi:10.1007/s11270-011-0741-9
[24] H. Takizawa, “Impact of Air Pollution on Allergic Diseases,” The Korean Journal of Internal Medicine, Vol. 26, No. 3, 2011, pp. 262-273.
[25] M. Chiusolo, E. Cadum, M. Stafoggia, C. Galassi, G. Berti, A. Faustini, L. Bisanti, M. A. Vigotti, M. P. Dessì, A. Cernigliaro, S. Mallone, B. Pacelli, S. Minerba, L. Simonato and F. Forastiere, “Short-Term Effects of Nitrogen Dioxide on Mortality and Susceptibility Factors in 10 Italian Cities: The EpiAir Study,” Environmental Health Perspectives, Vol. 119, No. 9, 2011, pp. 1233-1238. doi:10.1289/ehp.1002904
[26] G. L. Peng, X. M.Wang, Z. Y.Wu, Z. M. Wang, L. L. Yang, L. J. Zhong and D. H. Chen, “Characteristics of Particulate Matter Pollution in the Pearl River Delta Region, China: An Observational-Based Analysis of Two Monitoring Sites,” Journal of Environmental Monitoring, Vol. 13, 2011, pp. 1927-1934. doi:10.1039/c0em00776e
[27] P. Lenschow, H. J. Abraham, K. Kutzner, M. Lutz, J. D. PreuB and W. Reichenbacher, “Some Ideas about the Sources of PM10,” Atmospheric Environment, Vol. 35, No. 1, 2001, pp. S23-S33. doi:10.1016/S1352-2310(01)00122-4
[28] A. L. Malcolm, R. G. Derwent and R. H. Maryon, “Modelling the Long-Range Transport of Secondary PM10 to the UK,” Atmospheric Environment, Vol. 34, No. 6, 2000, pp. 881-894. doi:10.1016/S1352-2310(99)00352-0
[29] J. X. Yin, R. M. Harrison, Q. Chen, A. Rutter and J. J. Schauer, “Source Apportionment of Fine Particles at Urban Background and Rural Sites in the UK Atmosphere,” Atmospheric Environment, Vol. 44, No. 6, 2010, pp. 841-851. doi:10.1016/j.atmosenv.2009.11.026
[30] V. Vapnik, S. Golowich and A. Smola, “Support Method for Function Approximation Regression Estimation, and Signal Processing. Advances in Neural Information Processing Systems,” MIT Press, Cambridge, 1997.
[31] B. Scholkfopf, A. J. Smola and C. Burges, “Advances in Kernel Methods—Support Vector Learning, MIT Press, Cambridge, 1999.
[32] I. Sapankevych and R. Sankar, “Time Series Prediction Using Support Vector Machines: A Survey,” Computational Intelligence Magazine, Vol. 4, No. 2, 2009, pp. 24-38. doi:10.1109/MCI.2009.932254
[33] E. Osuna, R. Freund and F. Girosi, “Support Vector Machines: Training and Applications,” Massachusetts Institute of Technology, Cambridge, 1997.
[34] N. Cristianini and J. Shawe-Taylor, “An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods,” Cambridge University Press, Cambridge, 2000.
[35] A. Sotomayor-Olmedo, M. A. Aceves-Fernandez, E. Gorrostieta-Hurtado, J. C. Pedraza-Ortega, J. E. Vargas-Soto, J. M. Ramos-Arreguin and U. Villasenor-Carillo, “Evaluating Trends of Airborne Contaminants by Using Support Vector Regression Techniques,” Proceedings of the 21st International Conference on Electrical Communications and Computers, San Andres Cholula, 28 February 2011-2 March 2011, pp. 137-141. doi:10.1109/CONIELECOMP.2011.5749350
[36] W. Lu and W. Wang, “Potential Assessment of the Support Vector Machine Method in Forecasting Ambient Air Pollutant Trends,” Chemosphere, Vol. 59, No. 5, 2005, pp. 693-701. doi:10.1016/j.chemosphere.2004.10.032
[37] F. Wang, D. S. Chen, S. Y. Cheng, J. B. Li, M. J. Li and Z. H. Ren, “Identification of Regional Atmospheric PM10 Transport Pathways Using HYSPLIT, MM5-CMAQ and Synoptic Pressure Pattern Analysis,” Environmental Modelling & Software, Vol. 25, No. 8, 2010 , pp. 927-934. doi:10.1016/j.envsoft.2010.02.004

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.