Share This Article:

Human adipose tissue-derived stem cells in breast reconstruction following surgery for cancer: A controversial issue

Abstract Full-Text HTML XML Download Download as PDF (Size:507KB) PP. 164-166
DOI: 10.4236/scd.2013.33021    3,801 Downloads   6,914 Views   Citations

ABSTRACT

Breast cancer is the most common cancer in women. Patients, in particular young women, after surgical removal of the tumor have a poorer quality of life and psychological problems. Plastic surgery procedures for breast reconstruction, including autologous fat grafting, concur to reduce cosmetic and psychological problems. The maintenance of the transplanted fat is partially due to the presence of resident adipose derived-stem cells (ASCs). The latter can be isolated by digestion and centrifugation from the stromal vascular fraction (SVF) of subcutaneous adipose tissue. Intraoperatory SVF/ASC enrichment has been proposed to stabilize and optimalize autologous fat engraftment for breast reconstructive surgery after mastectomy, but the safety of these procedures is still uncertain. Although the literature offers contrasting opinions concerning the effects of ASCs on cancer growth according to the tumor type, at the present time ASC implementation for regenerative medicine therapies should be carefully considered in patients previously treated for breast cancer. At the present, reconstructive therapy utilizing ASC-enriched fat grafting should be postponed until there is no evidence of active disease.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Scioli, M. , Cervelli, V. , Gentile, P. , Bielli, A. , Bellini, R. and Orlandi, A. (2013) Human adipose tissue-derived stem cells in breast reconstruction following surgery for cancer: A controversial issue. Stem Cell Discovery, 3, 164-166. doi: 10.4236/scd.2013.33021.

References

[1] Missana, M.C., Laurent, I., Barreau, L. and Balleyguier, C. (2007) Autologous fat transfer in reconstructive breast surgery: Indications, technique and results. European Journal of Surgical Oncology, 33, 685-690. doi:10.1080/028418501127346846
[2] Mitchell, J.B., McIntosh, K., Zvonic, S., Garrett, S., Floyd, Z.E., Kloster, A., Di Halvorsen, Y., Storms, R.W., Goh, B., Kilroy, G., Wu, X. and Gimble, J.M. (2006) Immunophenotype of human adipose-derived cells: Temporal changes in stromal-associated and stem cell-associated markers. Stem Cells, 24, 376-385. doi:10.1634/stemcells.2005-0234
[3] Cervelli, V., Gentile, P., De Angelis, B., Calabrese, C., Di Stefani, A., Scioli, M.G., Curcio, B.C., Felici, M. and Orlandi, A. (2011) Application of enhanced stromal vascular fraction and fat grafting mixed with PRP in post-traumatic lower extremity ulcers. Stem Cell Research, 6, 103-111. doi:10.1016/j.scr.2010.11.003
[4] Cervelli, V., Scioli, M.G., Gentile, P., Doldo, E., Bonanno, E., Spagnoli, L.G. and Orlandi, A. (2012) Platelet-rich plasma greatly potentiates insulin-induced adipogenic differentiation of human adipose-derived stem cells through a serine/threonine kinase Akt-dependent mechanism and promotes clinical fat graft maintenance. Stem Cells Translational Medicine, 1, 206-220. doi:10.5966/sctm.2011-0052
[5] Gentile, P., Orlandi, A., Scioli, M.G., Di Pasquali, C., Bocchini, I., Curcio, C.B., Floris, M., Fiaschetti, V., Floris, R. and Cervelli, V. (2012) Comparative translational study: The combined use of enhanced stromal vascular fraction and platelet-rich plasma improves fat grafting maintenance in breast reconstruction. Stem Cells Translational Medicine, 1, 341-351. doi:10.5966/sctm.2011-0065
[6] Locke, M., Feisst, V. and Dunbar, P.R. (2011) Concise review: Human adipose-derived stem cells: Separating promise from clinical need. Stem Cells, 29, 404-411. doi:10.1002/stem.593
[7] Manenti, G., Bolacchi, F., Perretta, T., Cossu, E., Pistolese, C.A., Buonomo, O.C., Bonanno, E., Orlandi, A. and Simonetti, G. (2009) Small breast cancers: In vivo percutaneous US-guided radiofrequency ablation with dedicated cool-tip radiofrequency system. Radiology, 251, 339-346. doi:10.1148/radiol.2512080905
[8] Manabe, Y., Toda, S., Miyazaki, K. and Sugihara, H. (2003) Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer stromal cell interactions. The Journal of Pathology, 201, 221-228. doi:10.1002/path.1430
[9] Iyengar, P., Combs, T.P., Shah, S.J., et al. (2003) Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and protooncogene stabilization. Oncogene, 22, 6408-6423. doi:10.1038/sj.onc.1206737
[10] Xu, Q., Wang, L, Li, H., Han, Q., Li, J., Qu, X., Huang, S. and Zhao R.C. (2012) Mesenchymal stem cells play a potential role in regulating the establishment and maintenance of epithelial-mesenchymal transition in MCF7 human breast cancer cells by paracrine and induced autocrine TGF-β. International Journal of Oncology, 41, 959-968. doi:10.3892/ijo.2012.1541
[11] Yu, J.M., Jun, E.S., Bae, Y.C. and Jung, J.S. (2008) Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells and Development, 17, 463-473. doi:10.1089/scd.2007.0181
[12] Perrot, P., Rousseau, J., Bouffaut, A.L., Rédini, F., Cassagnau, E., Deschaseaux, F., Heymann, M.F., Heymann, D., Duteille, F., Trichet, V. and Gouin, F. (2010) Safety concern between autologous fat graft, mesenchymal stem cell and osteosarcoma recurrence. PLoS One, 5, Article ID: e10999. doi:10.1371/journal.pone.0010999
[13] Zolochevska, O., Yu, G., Gimble, J.M. and Figueiredo, M.L. (2012) Pigment epithelial-derived factor and melanoma differentiation associated gene-7 cytokine gene therapies delivered by adipose-derived stromal/mesenchymal stem cells are effective in reducing prostate cancer cell growth. Stem Cells, 21, 1112-1123. doi:10.1089/scd.2011.0247
[14] Chandler, E.M., Seo, B.R., Califano, J.P., Andresen Eguiluz, R.C., Lee, J.S., Yoon, C.J., Tims, D.T., Wang, J.X., Cheng, L., Mohanan, S., Buckley, M.R., Cohen, I., Nikitin, A.Y., Williams, R.M., Gourdon, D., Reinhart-King, C.A. and Fischbach, C. (2012) Implanted adipose progenitor cells as physicochemical regulators of breast cancer. Proceedings of the National Academy of Sciences of USA, 109, 9786-9791. doi:10.1073/pnas.1121160109
[15] Orlandi, A., Oliva, F., Taurisano, G., Candi, E., Di Lascio, A., Melino, G., Spagnoli, L.G. and Tarantino, U. (2009) Transglutaminase-2 differently regulates cartilage destruction and osteophyte formation in a surgical model of osteoarthritis. Amino Acids, 36, 755-763. doi:10.1007/s00726-008-0129-3
[16] Cao, L., Shao, M., Schilder, J., Guise, T., Mohammad, K.S. and Matei, D. (2012) Tissue transglutaminase links TGF-β, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer. Oncogene, 31, 2521-2534. doi:10.1038/onc.2011.429
[17] Pearl, P.R., Leedham, S.J. and Pacifico, M.D. (2012) The safety of autologous fat transfer in breast cancer: Lessons from stem cell biology. Journal of Plastic, Reconstructive & Aesthetic Surgery, 65, 283-288. doi:10.1016/j.bjps.2011.07.017
[18] Zimmerlin, L., Donnenberg, A.D., Rubin, J.P., Basse, P., Landreneau, R.J. and Donnenberg, V.S. (2011) Regenerative therapy and cancer: In vitro and in vivo studies of the interaction between adipose-derived stem cells and breast cancer cells from clinical isolates. Tissue Engineering Part A, 17, 93-106. doi:10.1089/ten.tea.2010.0248

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.