Share This Article:

Water Use in Sugar and Ethanol Industry in the State of São Paulo (Southeast Brazil)

Abstract Full-Text HTML Download Download as PDF (Size:717KB) PP. 135-142
DOI: 10.4236/jsbs.2013.32019    4,066 Downloads   6,301 Views   Citations

ABSTRACT

Brazil is the largest producer of ethanol from sugarcane in the world. While the ethanol industry is economically important to Brazil for several reasons, it also has a significant impact on the environment. Here we analyze the water consumptive use in the transformation of the feedstock (sugarcane) into ethanol and the impact of industrial byproduct effluents on water resources of the state of Sao Paulo, Brazil. Our estimates indicated that in the 2007-2008 harvest, 700 million m3 was withdrawn mainly from rivers and streams by 140 mills, and of this total 440 million m3 was consumed which yielded a water use of approximately 1.53 m3 ·water·tonˉ1 sugarcane or approximately 18 L·water·L-ˉ1 ethanol. At the same time, a total of 120 million m3 of vinasse by-product was produced in the state, equivalent to an organic load of approximately 3 billion kg·BOD during the harvest season or approximately 8 million kg·BOD·dˉ1. Although the water used by sugarcane mills has decreased in recent decades, it is still possible to further decrease the amount of water used by ethanol production. This would decrease the pressure on 1st order streams of the state from which most water is withdrawn. In addition, the enormous volume of vinasse production must be reduced because it exerts constant pressure on aquatic ecosystems, soil and groundwater due to the constant increase in the potassium (K) concentration in areas where it is used as a fertilizer.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

L. Martinelli, S. Filoso, C. Aranha, S. Ferraz, T. Andrade, E. Ravagnani, L. Coletta and P. Camargo, "Water Use in Sugar and Ethanol Industry in the State of São Paulo (Southeast Brazil)," Journal of Sustainable Bioenergy Systems, Vol. 3 No. 2, 2013, pp. 135-142. doi: 10.4236/jsbs.2013.32019.

References

[1] FAO, “The State of Food and Agriculture. Biofuels: Prospects, Risks and Opportunities,” FAO, Rome, 2008.
[2] R. W. Howarth, S. Bringezu, L. A. Martinelli, D. Massem, R. Santoro and O. Sala, “Introduction: Biofuels and the Environment in the 21st Century,” In: R. Howarth and G. Bringezu, Eds., Biofuels Environmental Consequences and Interactions with Changing Land Use, Cornell University, Ithaca, 2009, pp. 15-36. http://cip.cornell.edu/biofuels/
[3] N. H. Ravindranatha, R. Manuviea, J. Fargione, J. G. Canadell, G. Berndes, J. Woodse, H. Watson and J. Sathayeh, “Greenhouse Gas Implications of Land Use and Land Conversion to Biofuel Crops,” In: R. Howarth and S. Bringezu, Eds., Biofuels Environmental Consequences and Interactions with Changing Land Use, Cornell University, Ithaca, 2009, pp. 111-125. http://cip.cornell.edu/biofuels/
[4] M. F. Neves and M. A. Conejero, “Sistema Agroindustrial da Cana: Cenários e Agenda Estratégica,” Economia Aplicada, Vol. 11, 2007, pp. 587-604. doi:10.1590/S1413-80502007000400007
[5] M. A. F. D. Moraes, “O Mercado de Trabalho da Agroindústria Canavieira: Desafios e Oportunidades,” Economia Aplicada, Vol. 11, 2007, pp. 605-619. doi:10.1590/S1413-80502007000400008
[6] D. J. Connor and C. G. Hernandez, “Crops for Biofuel: Current Status and Prospects for the Future,” In: R. Howarth and S. Bringezu, Eds., Biofuels Environmental Consequences and Interactions with Changing Land Use, Cornell University, Ithaca, 2009, pp. 65-80. http://cip.cornell.edu/biofuels/
[7] F. Johnson, “Sugarcane Resources in Southern Africa,” Tiempo: Global Warming and the Third World, Vol. 35, 2000, pp. 1-4.
[8] L. A. Martinelli and S. Filoso, “Expansion of Sugarcane Ethanol Production in Brazil: Environmental and Social Challenges,” Ecological Applications, Vol. 18, No. 4, 2008, pp. 885-898. doi:10.1890/07-1813.1
[9] I. C. Macedo, J. E. A. Seabra and J. E. A. R. Silva, “Green House Gases Emissions in the Production and Use of Ethanol from Sugarcane in Brazil: The 2005/2006 Averages and Prediction for 2020,” Biomass and Bioenergy, Vol. 32, No. 7, 2008, pp. 582-595. doi:10.1016/j.biombioe.2007.12.006
[10] M. A. D’Agosto and S. K. Ribeiro, “Assessing Total and Renewable Energy in Brazilian Automotive Fuels. A life Cycle Inventory (LCI) Approach,” Renewable and Sustainable Energy Reviews, Vol. 13, No. 6-7, 2009, pp. 1326-1337. doi:10.1016/j.rser.2008.08.008
[11] D. Pimentel and T. W. Patzek, “Ethanol Production: Energy and Economic Issues Related to US and Brazilian Sugarcane,” In: D. Pimentel, Ed., Biofuels, Solar and Wind as Renewable Energy Systems, Springer, Ithaca, 2008, pp. 357-371. doi:10.1007/978-1-4020-8654-0_14
[12] A. R. Ometto, M. Z. Hauschild and W. N. L. Roma, “Lifecycle Assessment of Fuel Ethanol from Sugarcane in Brazil,” The International Journal of Life Cycle Assessment, Vol. 14, No. 3, 2009, pp. 236-247. doi:10.1007/s11367-009-0065-9
[13] M. E. D. de Oliveira, B. E. Vaughan and E. J. Rykiel Jr., “Ethanol as Fuel: Energy, Carbon Dioxide Balances, and Ecological Footprint,” Bioscience, Vol. 55, No. 7, 2005, pp. 593-602. doi:10.1641/0006-3568(2005)055[0593:EAFECD]2.0.CO;2
[14] J. Goldemberg, S. T. Coelho and P. Guardabassi, “The Sustainability of Ethanol Production from Sugarcane,” Energy Policy, Vol. 36, No. 6, 2008, pp. 2086-2097. doi:10.1016/j.enpol.2008.02.028
[15] A. Y. Hoekstra, A. K. Hung, A. Y. Hoekstra and P. Q. Hung, “Globalization of Water Resources: International Virtual Water Flows in Relation to Crop Trade,” Global Environmental Change, Vol. 15, No. 1, 2005, pp. 45-56. doi:10.1016/j.gloenvcha.2004.06.004
[16] A. Y. Hoekstra and A. K. Chapagain, “Water Footprints of Nations: Water Use by People as a Function of Their Consumption Pattern,” Water Resources Management, Vol. 21, No. 1, 2007, pp. 35-48. doi:10.1007/s11269-006-9039-x
[17] M. Falkenmark and J. Rockstrom, “Balancing Water for Humans and Nature. The New Approach in Ecohydrology,” Earthscan, London, 2004.
[18] V. Barbieri, “Medidas e Estimativas de Consumo Hídrico em Cana-de-Acúcar (Saccharum spp),” Ph.D. Dissertation, Universidade de Sao Paulo, Piracicaba,1981.
[19] G. Berndes, “Bioenergy and Water—The Implications of Large-Scale Bioenergy Production for Water Use and Supply,” Global Environmental Change, Vol. 12, No. 4, 2002, pp. 253-271. doi:10.1016/S0959-3780(02)00040-7
[20] C. de Fraiture, M. Giordano and Y. Liao, “Biofuels and Implications for Agricultural Water Uses: Blue Impacts of Green Energy,” Water Policy, Vol. 10, No. S1, 2008, pp. 67-81. doi:10.2166/wp.2008.054
[21] C. de Fraiture and G. Berndes, “Biofuels and Water,” In: R. Howarth and S. Bringezu, Eds., Biofuels Environmental Consequences and Interactions with Changing Land Use, Cornell University, Ithaca, 2009, pp 139-153. http://cip.cornell.edu/biofuels/
[22] Companhia Nacional de Abastecimento Perfil do Setor do Acúcar e do álcool no Brasil, “Situacao Observada em Novembro de 2007,” Ministério da Agricultura, Pecuária e Abastecimento, Brasília, 2008.
[23] A. Elia Neto, “água na Indústria da Cana de Acúcar. Workshop Projeto PPP: Aspectos Ambientais da Cadeia do Etanol de Cana de Acúcar,” Centro Tecnológico Canavieiro, Piracicaba, 2008. http://www.apta.sp.gov.br/cana
[24] A. Elia Neto, “Captacao e Uso de água no Processamento da Cana de Acúcar,” In: I. C. Macedo, Ed., Doze Estudos Sobre a Agroindústria da Cana-de-Acúcar no Brasil e a sua Sustentabilidade, Unica, Sao Paulo, 2005.
[25] A. C. Wilkie, K. J. Riedesel and J. M. Owens, “Stillage Characterization and Anaerobic Treatment of Ethanol Stillage from Conventional and Cellulosic Feedstocks,” Biomass and Bioenergy, Vol. 19, No. 2, 2000, pp. 63-102. doi:10.1016/S0961-9534(00)00017-9
[26] P. H. C. Luz, “Métodos de Utilizacao e Aplicacao de Vinhaca,” Workshop Tecnológico sobre Vinhaca, Pirassununga, 2008.
[27] úNICA, 2008. http://www.unicadata.com.br/historico-de-producao-e-moagem.phpidMn=32&tipoHistorico=4&acao=visualizar&idTabela=1325&safra=2007%2F2008&estado=SP
[28] A. Elia Neto and T. Nakahodo, “Caracterizacao FísicoQuímica da Vinhaca,” Relatório Técnico da Secao de Tecnologia de Tratamento de água do Centro de Tecnologia Copersucar, Piracicaba, 1999.
[29] Sao Paulo—Conselho Estadual de Recursos Hídricos, “Plano Estadual de Recursos Hídricos: 2004/2007 Resumo,” DAEE, Sao Paulo, 2006.
[30] ANA-FIESP-UNICA—Agência Nacional de águas/Federacao das Indústrias do Estado de Sao Paulo/Uniao da Indústria da Cana-de-Aaúcar: Centro de Tecnologia Canavieira, 2009. http://www.fiesp.com.br/ambiente/downloads/publicaguab.pdf
[31] R. C. Cerqueira Leite, M. R. L. V. Leal, L. A. B. Cortez, W. M. Griffin and M. I. G. Scandiffio, “Can Brazil Replace 5% of the 2025 Gasoline World Demand with Ethanol?” Energy, Vol. 34, No. 5, 2009, pp. 655-661. doi:10.1016/j.energy.2008.11.001
[32] http://www.dedini.com.br/pt/realese/010708c.pdf
[33] L. A. Martinelli, A. Krusche, R. L. Victoria, P. B. Camargo, M. C. Bernardes, E. S. Ferraz, J. M. Moraes and M. V. Ballester, “Effects of Sewage on the Checimal Composition of Piracicaba River, Brazil,” Water, Air and Soil Pollution, Vol. 110, No. 1-2, 1999, pp. 67-79. doi:10.1023/A:1005052213652
[34] M. H. B. Daniel, A. A. Montebello, M. C. Bernardes, J. P. H. B. Ometto, P. B. Camargo, A. V. Krusche, M. V. Ballester, R. L. Victoria and L. A. Martinelli, “Effects of Urban Sewage on Dissolved Oxygen, Dissolved Inorganic Carbon and Organic Carbon, and Electrical Conductivity of Small Streams along a Gradient of Urbanization in the Piracicaba River Basin,” Water, Air, and Soil Pollution, Vol. 136, No. 1-4, 2002, pp. 189-206. doi:10.1023/A:1015287708170
[35] J. D. Groppo, J. M. Moraes, C. E. Beduschi, A. M. Genovez and L. A. Martinelli, “Trend Analysis of Water Quality in Some Rivers with Different Degrees of Development within the Sao Paulo State, Brazil,” River Research and Applications, Vol. 24, No. 8, 2008, pp. 10561067. doi:10.1002/rra.1091
[36] J. P. H. B. Ometto, L. A. Martinelli, M. V. Ballester, A. Gessner, A. Krusche, R. L. Victoria and M. Williams, “Effects of Land Use on Water Chemistry and Macroinvertebrates in Two Streams of the Piracicaba River Basin, Southeast Brazil,” Freshwater Biology, Vol. 44, No. 2, 2000, pp. 327-337. doi:10.1046/j.1365-2427.2000.00557.x
[37] S. Filoso, L. A. Martinelli, M. R. Williams, L. B Lara, A. Krusche, M. V. Ballester, R. Victoria and P. B. Camargo, “Land Use and Nitrogen Export in the Piracicaba River Basin, Southeast Brazil,” Biogeochemistry, Vol. 65, No. 3, 2003, pp. 275-294. doi:10.1023/A:1026259929269
[38] CETESB—Companhia de Tecnologia de Saneamento Ambiental, “Norma Técnica—P4.231—Vinhaca Critérios e Procedimentos para Aplicacao no Solo Agrícola,” 2005. http://www.cetesb.sp.gov.br/Tecnologia/camaras/P4_231.pdf
[39] G. Gunkel, J. Kosmol, M. Sobral, H. Rohn, S. Montenegro and J. Aureliano, “Sugar Cane Industry as a Source of Water Pollution—Case Study on the Situation in Ipojuca River, Pernambuco, Brazil,” Water, Air, and Soil Pollution, Vol. 180, No. 1-4, 2007, pp. 261-269. doi:10.1007/s11270-006-9268-x

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.