Analysis of Sheep Lymphocyte Chromosomal Aberrations after Exposition to Chlortetracycline

Abstract

Tetracyclines are broad spectrum antibiotics and one type of various their compounds—chlortetracycline has been successfully used for our cytogenetic studies. We have selected for these studies the chromosomal assay because it is wellknown cytogenetic biomarker, which has been used to assess DNA damage at the chromosomal level. We analyzed the chromosomal aberrations and mitotic index in peripheral lymphocytes of sheep exposed by chlortetracycline chloride in pure tap water. To the food of the experimental group of animals (à n = 6) were added also 0.35 gof preparation Aureovit12 C80 plv. a. u. v. per kg b. w. and day (i.e. 168 mg of chlortetracycline hydrochloride/kg b. w.) daily in food. The frequencies of aberrant cells (ABC) in the experimental and control groups of sheep were stated to differ significantly (P = < 0.001). In experimental group, chromatid breaks were the dominant type of chromosomal aberrations. No statistical differences in mitotic index values were found in the both groups (P > 0.05). Increased frequencies of chromosome aberrations in peripheral lymphocytes of sheep exposed by chlortetracycline in food, suggested a potential hazard which needs the attention from the viewpoint of human and animal health. This knowledge is useful for all, for the human and veterinary medicine, as well as for the aquaculture. Many of these chlortetracycline substances for their environmental persistence and chemical unstability are present in the environment for various periods, and as a result, they are responsible for several effects on human and animal health through food chain.

Share and Cite:

I. Šutiaková, V. Šutiak and M. Tulenková, "Analysis of Sheep Lymphocyte Chromosomal Aberrations after Exposition to Chlortetracycline," Journal of Environmental Protection, Vol. 4 No. 6A, 2013, pp. 38-42. doi: 10.4236/jep.2013.46A005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. Sokol and E. Matisova, “Determination of Tetracycline Antibiotics in Animal Tissues of Food-Producing Animals by High-Performance Liquid Chromatography Using Solid-Phase Extraction,” Journal of Chromatography, Vol. 669, No. 1-2, 1994, pp. 75-80. doi:10.1016/0021-9673(94)80338-2
[2] B. F. Kania, “Farmakologia Weterynaryjna Z Elementami Terapii. (Ed.), Wydawnictvo Lekarskie PZWL,” Warszava, 2001.
[3] W. C. Andersen, J. E. Roybal, S. A. Gonzales, S. B. Turnipseed, A. P. Pfenning and L. R. Kuck, “Determination of Tetracycline Residues in Shrimp and Whole Milk Using Liquid Chromatography with Ultraviolet Detection and Residue Confirmation by Mass Spectrometry,” Analytica Chimica Acta, Vol. 529, No. 1-2, 2005, pp. 145-150. doi:10.1016/j.aca.2004.08.012
[4] D. Lin, Q. Zhou, Y. Xu, Ch. Chen and Y. Li, “Physiological and Molecular Responses of the Earthworm (Eisenia fetida) to Soil Chlortetracycline Contamination,” Environmental Pollution, Vol. 171, 2012, pp. 46-51. doi:10.1016/j.envpol.2012.07.020
[5] V. Sutiak and I. Sutiaková, “Principal, Harmful and Side Effects of Drugs in Animals,” Veterinary Journal Czech, Vol. 49, No. 2, 1999, pp. 77-81.
[6] E. Martínez-Carbalo, C. Gonzáles-Barreiro, S. Scharf and O. Gans, “Environmental Monitoring Study of Selected Veterinary Antibiotics in Animal Manure and Soils in Austria,” Environmental Pollution, Vol. 148, No. 2, 2007, pp. 570-579. doi:10.1016/j.envpol.2006.11.035
[7] B. Halling-SΦrensen, G. SengelΦv and J. TjΦrnelund, “Toxicity of Tetracyclines and Tetracycline Degradation Products to Environmentally Relevant Bacteria, Including Selected Tetracycline-Resistant Bacteria,” Archives of Environmental Contamination and Toxicology, Vol. 42, No. 3, 2002, pp. 263-271. doi:10.1007/s00244-001-0017-2
[8] B. Halling-SΦrensen, A. Lykkeberg, F. Ingerslev, P. Blackwell and J. TjΦrnelund, “Characterisation of the Abiotic Degradation Pathways of Oxytetracyclines in Soil Interstitial Water Using LC-MS-MS,” Chemosphere, Vol. 50, No. 10, 2003, pp. 1331-1342. doi:10.1016/S0045-6535(02)00766-X
[9] A. C. Capleton, C. Courage, P. Rumsby, Ph. Holmes, E. Stutt, A. B. A. Boxall and L. S. Levy, “Priorisiting Veterinary Medicines According to Their Potential Indirect Human Exposure and Toxicity Profile,” Toxicology Letters, Vol. 163, No. 3, 2006, pp. 213-223. doi:10.1016/j.toxlet.2005.10.023
[10] J. Witte, G. Oetken, C. Buschhfort and A. Hartman, “A Comparison of the DNA-Damaging, the Cytotoxic and Genotoxic Properties of Tetracycline in Human Fibrablasts in the Presence and Absence of Light,” Mutation Research, Vol. 315, No. 1, 1994, pp. 33-40. doi:10.1016/0921-8777(94)90025-6
[11] A. Hartman, D. Wess and I. Witte, “Enhanced Cyto- and Genotoxicity of Tetracycline in Wilson Disease Fibroblasts,” Mutation Research, Vol. 348, No. 1, 1995, pp. 7-12. doi:10.1016/0165-7992(95)90014-4
[12] A. Celik and D. Eke, “The Assessment of Cytotoxicity and Genotoxicity of Tetracycline Antibiotic in Human Blood Lymphocytes Using CBMN and SCE Analysis, in Vitro,” International Journal of Human Genetics, Vol. 11, No. 1, 2011, pp. 23-29.
[13] J. D. Tucker and R. J. Preston, “Chromosome Aberrations, Micronuclei, Aneuploids Sister Chromatid Changes and Cancer Risk Assessment,” Mutation Research, Vol. 365, No. 1-3, 1996, pp. 147-159. doi:10.1016/S0165-1110(96)90018-4
[14] H. Norppa, S. Bonassi, I. L. Hansteen, L. Hagmar, U. Stromberg, P. Rossner, P. Boffetta, C. Lindholm, S. Gundy, J. Lazutka, A. Cebulska-Wasilewska, A. Fabiánová, R. J. Srám, L. E. Knudsen, L. Barale and A. Fucic, “Chromosomal Aberrations and SCEs as Biomarkers of Cancer Risk,” Mutation Research, Vol. 600, No. 1-2, 2006, pp. 37-45. doi:10.1016/j.mrfmmm.2006.05.030
[15] M. Fenech, “Cytokinesis-Block Micronucleus Cytome Assays,” Nature Protocols, Vol. 2, No. 5, 2007, pp. 1084-1104. doi:10.1038/nprot.2007.77
[16] C. Bolognesi, A. Creus, P. Ostrosky-Wegman and R. Marcos, “Review Micronuclei and Pescticide Exposure,” Mutagenesis, Vol. 26, No. 1, 2011, pp. 19-26. doi:10.1093/mutage/geq070
[17] W. A. Van der Schalie, J. H. Gardner, J. A. Buntle, C. H. T. De Rosa, R. A. Finch, J. S. Reif, R. H. Reuter, L. C. Backer, J. Burger, L. C. Folmar and W. S. Stokes, “Animals as Sentinels of Human Health Hazards of Environmental Chemicals,” Environmental Health Perpectives, Vol. 107, No. 4, 1999, pp. 309-315. doi:10.1289/ehp.99107309
[18] A. Laciaková, E. Bekeová, V. Hendrichovsky, P. Turek and V. Laciak, “K Problematikevyskytu Chlóru v Pitnej Vode a Jeho Vplyv na Obsah Chloridov V Krvnom Sére,” Hygiena, Vol. 44, 1999, pp. 78-84.
[19] J. R. K. Savage, “Classification and Relationships of Induced Chromosomal Structural Changes,” Journal of Medical Genetics, Vol. 12, 1975, pp. 103-122.
[20] D. Di Berardino, G. P. Di Moe, D. S. Gullagher, H. Hayes and I. Iannuzii, “ISCNDB International System for Chromosome Nomenclature of Domestic Bovids (Coordinator),” Cytogenetics Cell Genetics, Vol. 92, No. 3-4, 2001, pp. 283-299. doi:10.1159/000056917
[21] M. Sorsa, J. Wilbourn and H. Vainio, “Human Cytogenetic Damage as a Predictor of Cancer Risk,” In: H. Vainio, P. N. Magee, D. B. McGregor and A. B. Mc Michael, Eds., Mechanisms of Carcinogenesis in Risk Identification, International Agency for Research on Cancer, DARC, Lyon, 1992, pp. 543-554.
[22] G. Obe, P. Pfeiffer, J. R. K. Savage and J. C. Johannes, W. Goedecke, P. Jeppesen, A. T. Natarajan, W. Martinez-López, G. A. Folle and M. E. Drets, “Chromosomal Aberrations: Formation, Identification and Distribution,” Mutation Research, Vol. 504, No. 1-2, 2002, pp. 17-36. doi:10.1016/S0027-5107(02)00076-3
[23] A. BrΦger, “The Chromatid Gap—A Useful Parameter in Genotoxicology?” Cytogenetetics Cell Genetics, Vol. 33, No. 1-2, 1982, pp. 14-19. doi:10.1159/000131720
[24] N. McGranahan, R. A. Burell, D. Endesfelder, M. R. Novelli and Ch. Swanton, “Cancer Chromosomal Instability: Therapeutic and Diagnostic Challenges,” EMBO Reports, Vol. 13, No. 6, 2012, pp. 528-538. doi:10.1038/embor.2012.61
[25] W. W. Au, “Monitoring Human Populations for Effects of Radiation and Chemical Exposures Using Cytogenetic Techniques,” Occupational Medicine, Vol. 6, 1991, pp. 597-611.
[26] A. T. Natarajan and F. Palitti, “DNA Repair and Chromosomal Alterations,” Mutation Research, Vol. 657, No. 1, 2008, pp. 3-7. doi:10.1016/j.mrgentox.2008.08.017
[27] L. Muller and P. Kasper, “Human Biological Relevance and the Use of Treshold-Arguments in Regulatory Genotoxicity Assessment: Experience with Pharmaceutical,” Mutation Research, Vol. 464, No. 1, 2000, pp. 19-34. doi:10.1016/S1383-5718(99)00163-1
[28] L. Dong, J. Gao, X. Xie and Q. Zhou, “DNA Damage and Biochemical Toxicity of Antibiotics in Soil on the Earthworm Eisenia fetida,” Chemosphere, Vol. 89, No. 1, 2012, pp. 44-51. doi:10.1016/j.chemosphere.2012.04.010
[29] R. J. Preston, B. J. Dean, S. Galloway, H. Holden, A. F. McFee and H Shelby, “Mammalian in Vivo Cytogenetic Assays: Analysis of Chromosome Aberration in Bone Marrow Cells,” Mutation Research, Vol. 189, No. 2, 1987, pp. 157-165. doi:10.1016/0165-1218(87)90021-8

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.