Share This Article:

Changes in Activity of Three Sulfurtransferases in Response to Exposure to Cadmium, Lead and Mercury Ions

Abstract Full-Text HTML XML Download Download as PDF (Size:585KB) PP. 19-28
DOI: 10.4236/jep.2013.46A003    3,071 Downloads   4,628 Views   Citations

ABSTRACT

Cadmium, lead and mercury are environmentally persistent toxicants that affect tissues and cellular components or exert an effect on generation of reactive oxygen species causing a decreased level of available antioxidant reserves. Sulfurtransferases are enzymes that are widespread in nature. Rhodanese, 3-mercaptopyruvate sulfurtransferase and γ-cystathionase play an important role in the metabolism of L-cysteine. Heavy metal ions can bind to -SH groups of cysteine residues in their active sites and, therefore, decrease the activity of these enzymes and result in changes in the level of sulfane sulfur-containing compounds, products of L-cysteine desulfuration. Changes in the activity of sulfurtransferases were investigated in the kidneys, heart, brain, liver and skeletal muscle of Marsh frogs (Pelophylax ridibundus) after 10 days of exposure to Pb(NO3)2 at the concentration of 28 mg/L and CdCl2 at the concentration of 40 mg or 80 mg/L, and in Xenopus laevies tissues after 7 and 14 days of exposure to HgCl2 at the concentration of 1.353 mg/L. The investigated heavy metal ions have a tendency to inhibit the activity of sulfurtransferases and decrease the level of glutathione, what can result in oxidative stress and oxidation of cysteine -SH groups to -SOH. This reversible oxidation and reduction of these redox sensitive groups can play a role in defenses against oxidative stress. Based on the presented results, one can surmise that also the expression of the three sulfurtransferases depends on heavy metal ions and/or some parameters of oxidative stress, what can explain the increase of the activity of MPST and CST in the kidney.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Kaczor-Kamińska, P. Sura and M. Wróbel, "Changes in Activity of Three Sulfurtransferases in Response to Exposure to Cadmium, Lead and Mercury Ions," Journal of Environmental Protection, Vol. 4 No. 6A, 2013, pp. 19-28. doi: 10.4236/jep.2013.46A003.

References

[1] D. Quig, “Cysteine Metabolism and Metal Toxicity,” Alternative Medicine Review, Vol. 4, No. 3, 1998, pp. 262-269.
[2] T. W. Clarkson, “The Three Modern Faces of Mercury,” Environmental Health Perspectives, Vol. 110, No. S1, 2002, pp. 11-23. doi:10.1289/ehp.02110s111
[3] L. Patric, “Lead Toxicity Part II: The Role of Free Radical Damage and the Use of Antioxidants in Pathology and Threatment of Lead Toxicity,” Alternative Medicine Review, Vol. 11, No. 2, 2006, pp. 114-127.
[4] J. P. K. Rooney, “The Role of Thiols, Dithiols, Nutritional Factors and Interacting Ligands in the Toxicology of Mercury,” Toxicology, Vol. 234, No. 3, 2007, pp. 145-156. doi:10.1016/j.tox.2007.02.016
[5] S. S. Sharma and K. J. Dietz, “The Relationship between Metal Toxicity and Cellular Redox Imbalance,” Trends in Plant Science, Vol. 14, No. 1, 2009, pp. 43-50. doi:10.1016/j.tplants.2008.10.007
[6] H. Needleman, “Lead Poisoning,” Annual Review of Medicine, Vol. 55, 2004, pp. 209-222. doi:10.1146/annurev.med.55.091902.103653
[7] J. P. Bressler and G. W. Goldstein, “Mechanism of Lead Neurotoxicity,” Biochemical Pharmacology, Vol. 41, No. 4, 1991, pp. 479-484. doi:10.1016/0006-2952(91)90617-E
[8] P. Sura, N. Ristic, P. Bronowicka and M. Wróbel, “Cadmium Toxicity Related to Cysteine Metabolism and Glutathione Levels in Frog Rana ridibunda Tissues,” Comparative Biochemistry and Physiology, Vol. 142C, No. 1-2, 2006, pp. 128-135.
[9] P. Sura, M. Wróbel and P. Bronowicka, “Season Dependent Response of the Marsh Frog (Rana ridibunda) to Cadmium Exposure,” Folia Biologica (Kraków), Vol. 54, No. 3-4, 2006, pp. 159-165. doi:10.3409/173491606778557536
[10] M. A. Lynes, Y. J. Kang, S. L. Sensi, G. A. Perdrizet and L. E. Hightower, “Heavy Metal Ions in Normal Physiology, Toxic Stress and Cytoprotection,” Annals of the New York Academy of Science, Vol. 1113, 2007, pp. 159-172. doi:10.1196/annals.1391.010
[11] P. Sura, P. Bronowicka-Adamska, E. Furtak and M. Wróbel, “Effect of Mercury Ions on Cysteine Metabolism in Xenopus laevis Tissues,” Comparative Biochemistry and Physiology, Vol. 154C, No. 3, 2011, pp. 180-186.
[12] M. Kaczor, P. Sura, P. Bronowicka-Adamska and M. Wróbel, “Exposition to Lead in Water and Cysteine Metabolism in Pelophylax ridibundus Tissues,” Aquatic Toxicology, Vol. 127, 2013, pp. 72-77. doi:10.1016/j.aquatox.2012.03.014
[13] S. J. Flora, M. Mittal and A. Metha, “Heavy Metal Induced Oxidative Stress & Its Possible Reversal by Chelation Therapy,” Indian Journal of Medical Research, Vol. 128, No. 4, 2008, pp. 501-523.
[14] M. Valko, H. Morris and M. T. D. Cronin, “Metals, Toxicity and Oxidative Stress,” Current Medicinal Chemistry, Vol. 12, No. 10, 2005, pp. 1161-1208. doi:10.2174/0929867053764635
[15] T. L. Guidotti and L. Ragain, “Protecting Children from Toxic Exposure: Three Strategies,” Pediatric Clinic of North America, Vol. 54, No. 2, 2007, pp. 227-235. doi:10.1016/j.pcl.2007.02.002
[16] N. Nagahara, “Catalytic Site Cysteine of Thiol Enzyme, Sulfurtransferase,” Journal of Amino Acids, Vol. 2011, 2011, pp. 1-7. doi:10.4061/2011/709404
[17] S. Mani, G. Yang and R. Wang, “A Critical Life-Supporting Role for Cystathionine γ-Lyase in the Absence of Dietary Cysteine Supply,” Free Radical Biology and Medicine, Vol. 50, No. 10, 2011, pp. 1280-1287. doi:10.1016/j.freeradbiomed.2011.01.038
[18] J. I. Toohey, “Sulphane Sulfur in Biological Systems: A Possible Regulatory Role,” Biochemistry, Vol. 264, No. 3, 1989, pp. 625-632.
[19] W. N. Valentine and J. K. Frankenfeld, “3-Mercaptopyruvate Sulfur Transferase (EC: 2.8.1.2.): A Simple Assay Adapted to Human Blood Cells,” Clinica Chimica Acta, Vol. 51, No. 2, 1974, pp. 205-210. doi:10.1016/0009-8981(74)90031-X
[20] M. Wróbel, H. Jurkowska, L. Sliwa and Z. Srebro, “Sulfurtransferases and Cyanide Detoxification in Mouse Liver, Kidney and Brain,” Toxicology Mechanisms and Methods, Vol. 14, No. 6, 2004, pp. 331-337. doi:10.1080/15376520490434683
[21] B. Sorbo, “Rhodanase. Methods in Enzymology, (Colowick SP, Kaplan NO, eds.),” Academic Press, New York, Vol. 2, 1955, pp. 334-337. doi:10.1016/S0076-6879(55)02207-6
[22] Y. Matsuo and D. M. Greenberg, “A Crystalline Enzyme That Cleaves Homoserine and Cystathionine,” The Journal of Biological Chemistry, Vol. 230, No. 2, 1958, pp. 545-560.
[23] J. Czubak, M. Wróbel and H. Jurkowska, “Cystathionine γ-Lyase (EC: 4.4.1.1.) an Enzymatic Assay of α-Ketobutyrate Using Lacetate Dehydrogenase,” Acta Biological Cracoviensia Series Zoologica, Vol. 44, 2002, pp. 113-117.
[24] J. L. Wood, “Sulfane Sulfur,” In: W. W. Jakoby and O. W. Griffith, Eds., Methods in Enzymology, Academic Press, San Diego, 1987, pp. 25-29.
[25] O. H. Lowry, N. J. Rosenbrough, A. L. Farr and R. I. Randall, “Protein Measurement with the Folin Phenol Reagent,” The Journal of Biological Chemistry, Vol. 193, No. 1, 1951, pp. 265-275.
[26] P. K. Dominick, P. B. Cassidy and J. C. Roberts, “A New and Versatile Method for Determination of Thiolamines of Biological Importance,” Journal of Chromatography B: Biomedical Sciences and Applications, Vol. 761, No. 1, 2001, pp. 1-12. doi:10.1016/S0378-4347(01)00298-5
[27] M. Wróbel, I. Lewandowska, P. Bronowicka-Adamska and A. Paszewski, “Sulfurtransferases and Cyanide Detoxification in Mouse Liver, Kidney and Brain,” Toxicology Mechanisms and Methods, Vol. 14, No. 6, 2009, pp. 331-337. doi:10.1080/15376520490434683
[28] M. Szczerbowska-Boruchowska, “X-Ray Fluorescence Spectrometry, an Analytical Tool in Neurochemical Research,” X-Ray Spectromery, Vol. 37, No. 1, 2008, pp. 21-31. doi:10.1002/xrs.1007
[29] R. Dringen, J. M. Gutterer and J. Hirrlinger, “Glutathione Metabolism in Brain. Metabolic Interaction between Astrocytes and Neurons in the Defence against Reactive Oxygen Species,” European Journal of Biochemistry, Vol. 267, No. 16, 2000, pp. 4912-4916. doi:10.1046/j.1432-1327.2000.01597.x
[30] J. B. Schulz, J. Lindenau, J. Seyfried and J. Dichgans, “Glutathione, Oxidative Stress and Neurodegeneration,” European Journal of Biochemistry, Vol. 267, No. 16, 2000, pp. 4904-4911. doi:10.1046/j.1432-1327.2000.01595.x
[31] Y. Ogasawara, S. Isoda and S. Tanabe, “A Labile Sulfur in Trisulfide Affects Cytochrome P-450 Dependnet Lipid Peroxidation in the Rat Liver Microsomes,” Toxicology Letters, Vol. 99, No. 3, 1998, pp. 191-198. doi:10.1016/S0378-4274(98)00156-8
[32] D. K. Rassin, “Source, Metabolism, and Function of Cysteine and Glutathione in the Central Nervous System,” Journal of Nauroscience Methods, Vol. 30, 1996, pp. 167-177. doi:10.1016/S1043-9471(96)80103-0
[33] S. M. A. El-Shenawy and N. S. Hassan, “Comparative Evaluation of the Protective Effect of Selenium and Garlic against Liver and Kidney Damage Induced by Mercury Chloride in the Rats,” Pharmacological Reports, Vol. 60, No. 2, 2008, pp. 199-208.
[34] A. Pompella, A. Visvikis, A. Paolicchi, V. De Tata, A. F. Casini, “The Changing Faces of Glutathione, a Cellular Protagonist,” Biochemical Pharmacology, Vol. 66, No. 8, 2003, pp. 1499-1503. doi:10.1016/S0006-2952(03)00504-5
[35] Y. Wang, J. Fang, S. S. Leonard and K. M. Krishna Rao, “Cadmium Inhibits the Electron Transfer Chain and Induces Reactive Oxygen Species,” Free Radical Biology and Medicine, Vol. 36, No. 11, 2004, pp. 1434-1443. doi:10.1016/j.freeradbiomed.2004.03.010
[36] A. K. Vogiatzis and N. S. Loumbourdis, “Cadmium Accumulation in Liver and Kidneys and Hepatic Metallothionein and Glutathione Levels in Rana ridibunda, after exposure to CdCl2,” Archives Environmental Contamination and Toxicolgy, Vol. 34, No. 1, 1998, pp. 64-68. doi:10.1007/s002449900286
[37] A. Stacchiotti, E. Borsani, L. Rodella, R. Rezzani, L. Bianchi and A. Lavaza, “Dose-Dependent Mercuric Chloridemtubular Injury in Rat Kidney,” Ultrastructural Pathology, Vol. 27, No. 4, 2003, pp. 253-259. doi:10.1080/01913120309921
[38] A. Stacchiotti, A. Lavaza, R. Rezzani, E. Borsani, L. Rodella and L. Bianchi, “Mercuric Chloride-Induced Alterations in Stress Protein Distribution in Rat Kidney,” Histology and Histopathology, Vol. 19, No. 4, 2004, pp. 1209-1218.
[39] L. H. Lash, “Glutathione Transport in the Kidneys. Experimental Models, Mechanisms, and Methods,” Methods in Pharmacology and Toxicology, Vol. 3, 2005, pp. 319-339.
[40] G. Wu, Y-Z. Fang, S. Yang, J. R. Lupton and N. D. Turner, “Glutathione Metabolism and Its Implication for Health,” The Journal of Nutrition, Vol. 134, No. 3, 2004, pp. 489-492.
[41] P. Manna, M. Sinha and P. C. Sil, “Taurine Plays a Beneficial Role against Cadmium-Induced Oxidative Renal Dysfunction,” Amino Acids, Vol. 36, No. 3, 2009, pp. 417-428. doi:10.1007/s00726-008-0094-x
[42] Y. Ogasawara, G. M. Lacourciere, K. Ishii and T. C. Stadtman, “Characterization of Potential Selenium-Binding Proteins in the Selenophosphate Synthetase System,” Proceedings of the National Academy of Science, Vol. 102, No. 4, 2005, pp. 1012-1016. doi:10.1073/pnas.0409042102
[43] M. Wróbel and H. Jurkowska, “Menadione Effect on L-Cysteine Desulfuration in U373 Cells,” Acta Biochimica Polonica, Vol. 54, No. 2, 2007, pp. 407-411.
[44] J. T. Pinto, B. F. Krasnikov and A. J. L. Cooper, “Redox-Sensitive Proteins Are Potential Targets of Garlic-Derived Mercaptocysteine Derivatives,” Journal of Nutrition, Vol. 136, Suppl. 3, 2006, pp. 835S-841S.
[45] R. Sabelli, E. Iorio, A. De Martino, F. Podo, A. Ricci, G. Viticchiè, G. Rotilio, M. Paci and S. Melino, “Rhodanese-Thioredoxin System and Allyl Sulfur Compounds,” FEBS Journal, Vol. 275, No. 15, 2008, pp. 3884-3899. doi:10.1111/j.1742-4658.2008.06535.x

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.