Share This Article:

Method to Study the Primary Nucleation for Solid Solution: Application to Uranium-Neodymium Oxalate Coprecipitation

Abstract Full-Text HTML Download Download as PDF (Size:942KB) PP. 75-87
DOI: 10.4236/csta.2013.22011    3,601 Downloads   6,246 Views   Citations

ABSTRACT

Actinides co-precipitation is currently investigated in order to synthesize solid solutions of actinides mixed oxalates. This paper deals with the thermodynamic and kinetic study of the precipitation of uranium-neodymium oxalate system. Based on an analysis of the theories developed in the literature, a new expression for the determination of the supersaturation ratio for the solid solutions is presented. An experimental study of the nucleation kinetics was performed on the mixed uranium-neodymium oxalates. Homogeneous and heterogeneous primary nucleation laws are obtained using a specific stopped flow apparatus. The experimental results are consistent with the classical behaviour of nucleation phenomena. The values of the kinetic parameters for the solid solution point out that the formation of the uraniumneodymium mixed oxalates is kinetically favoured compared with the simple uranium and neodymium oxalates.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

D. Parmentier, M. Bertrand, E. Plasari and P. Baron, "Method to Study the Primary Nucleation for Solid Solution: Application to Uranium-Neodymium Oxalate Coprecipitation," Crystal Structure Theory and Applications, Vol. 2 No. 2, 2013, pp. 75-87. doi: 10.4236/csta.2013.22011.

References

[1] S. Grandjean, A. Beres, J. Rousselle and C. Maillard, Patent No. FR/04510058, 2004.
[2] B. Arab-Chapelet, S. Grandjean, G. Nowogrocki and F. Abraham, “Synthesis of New Mixed Actinides Oxalates as Precursors of Actinides Oxide Solid Solutions,” Journal of Alloys and Compounds, Vol. 444-445, 2007, pp. 387-390. doi:10.1016/j.jallcom.2007.01.033
[3] F. Lippmann, “Phase Diagrams Depicting Aqueous Solubility of Binary Mineral Systems,” Neues Jahrbuch für Mineralogie Abhandlungen, Vol. 139, No. 1, 1980, pp. 1-25.
[4] P. D. Glynn and E. J. Reardon, “Solid-Solution Aqueous-Solution Equilibria—Thermodynamic Theory and Representation,” American Journal of Science, Vol. 290, No. 2, 1990, pp. 164-201. doi:10.2475/ajs.290.2.164
[5] M. Prieto, A. Putnis and L. Fernandez Diaz, “Crystallization of Solid-Solutions from Aqueous-Solutions in a Porous-Medium—Zoning in (Ba,Sr)SO4,” Geological Magazine, Vol. 130, No. 3, 1993, pp. 289-299.
[6] H. Gamsjager, E. Konigsberger and W. Preis, “Lippmann Diagrams: Theory and Application to Carbonate Systems,” Aquatic Geochemistry, Vol. 6, No. 2, 2000, pp. 119-132. doi:10.1023/A:1009690502299
[7] C. M. Pina, M. Enders and A. Putnis, “The Composition of Solid Solutions Crystallising from Aqueous Solutions: The Influence of Supersaturation and Growth Mechanisms,” Chemical Geology, Vol. 168, No. 3, 2000, pp 195-210.
[8] J. M. Astilleros, C. M. Pina, L. Fernandez Diaz and A. Putnis, “Supersaturation Functions in Binary Solid Solution-Aqueous Solution Systems,” Geochimica et Cosmochimica Acta, Vol. 67, No. 9, 2003, pp. 1601-1608. doi:10.1016/S0016-7037(02)01166-3
[9] C. M. Pina, A. Putnis and J. M. Astilleros, “The Growth Mechanisms of Solid Solutions Crystallising from Aqueous Solutions,” Chemical Geology, Vol. 204, No. 1-2, 2004, pp. 145-161. doi:10.1016/j.chemgeo.2003.12.002
[10] A. J. Andara, D. M. Heasman, A. Fernandez Gonzales and M. Prieto, “Characterization and Crystallization of Ba(SO4,SeO4) Solid Solution,” Crystal Growth & Design, Vol. 5, No. 4, 2005, pp. 1371-1378. doi:10.1021/cg0497290
[11] A. G. Shtukenberg, Y. O. Punin and P. Azimov, “Crystallization Kinetics in Binary Solid Solution-Aqueous Solution Systems,” American Journal of Science, Vol. 306, No. 7, 2006, pp. 553-574. doi:10.2475/07.2006.03
[12] J. M. Astilleros, C. M. Pina, L. Fernandez Diaz, M. Prieto and A. Putnis, “Nanoscale Phenomena during the Growth of Solid Solutions on Calcite {101-4} Surfaces,” Chemical Geology, Vol. 225, No. 3-4, 2006, pp. 322-335. doi:10.1016/j.chemgeo.2005.08.025
[13] C. A. YuHang, Asenjo, N. Sanchez Pastor, L. Fernandez Diaz, J. Gomez and C. M. Pina, “Growth of BaxSr1-xSO4 Nano-Steps on Barite (0 0 1) Face,” Surface Science, Vol. 601, No. 2, 2007, pp. 381-389.
[14] M. A. Prieto, F. Gonzalez, A. Putnis and L. F. Diaz, “Nucleation, Growth, and Zoning Phenomena in Crystallizing (Ba, Sr)CO3, Ba(SO4, CrO4), (Ba, Sr)SO4, and (Cd, Ca)CO3 Solid Solutions from Aqueous Solutions,” Geochimica Cosmochimica Acta, Vol. 61, No. 16, 1997, pp. 3383-3397. doi:10.1016/S0016-7037(97)00160-9
[15] C. Noguera, B. Fritz, A. Clement and Y. Amal, “Simulation of the Nucleation and Growth of Binary Solid Solutions in Aqueous Solutions,” Chemical Geology, Vol. 269, No. 1-2, 2010, pp. 89-99. doi:10.1016/j.chemgeo.2009.05.025
[16] A. G. Shtukenberg, Y. O. Punin and P. Azimov, “Reply to Comment: Supersaturation in Binary Solid Solution— Aqueous Solution Systems by M. Prieto, J. M. Astilleros, C. M. Pina, L. Fernandez-Diaz and A. Putnis,” American Journal of Science, Vol. 307, No. 7, 2007, pp. 1046-1050. doi:10.2475/07.2007.05
[17] M. Prieto, J. M. Astilleros, C. M. Pina, L. Fernandez Diaz and A. Putnis, “Comment: Supersaturation in Binary Solid Solution-Aqueous Solution Systems,” American Journal of Science, Vol. 307, No. 7, 2007, pp. 1034-1045. doi:10.2475/07.2007.04
[18] D. C. Thorstenson and L. N. Plummer, “Equilibrium Criteria for 2-Component Solids Reacting with Fixed Composition in an Aqueous Phase Example—Magnesian Calcites,” American Journal of Science, Vol. 277, No. 9, 1977, pp.1203-1223. doi:10.2475/ajs.277.9.1203
[19] C. M. Pina and A. Putnis, “The Kinetics of Nucleation of Solid Solutions from Aqueous Solutions: A New Model for Calculating Non-Equilibrium Distribution Coefficients,” Geochimica and Cosmochimica Acta, Vol. 66, No. 2, 2002, pp. 185-192. doi:10.1016/S0016-7037(01)00770-0
[20] A. Putnis, C. M. Pina, J. M. Astilleros, L. Fernandez Diaz and M. Prieto, “Nucleation of Solid Solutions Crystallizing from Aqueous Solutions,” Philosophical Transactions of the Royal Society of London Series A—Mathematical Physical and Engineering Sciences, Vol. 361, No. 1804, 2003, pp 615-631.
[21] V. Pacary, Y. Barre and E. Plasari, “Modeling and Comparison of Continuous and Semicontinuous Process for Simulating Decontamination of Liquid Nuclear Wastes by Coprecipitation of Strontium Ions with Barium Sulphate,” International Journal of Chemical Reactor Engineering, Vol. 6, No. A32, 2008.
[22] B. Chapelet-Arab, G. Nowogrocki, F. Abraham and S. Grandjean, “U(IV)/Ln(III) Unexpected Mixed Site in Polymetallic Oxalato Complexes. Part I. Substitution of Ln(III) for U(IV) from the New Oxalate (NH4)2U2(C2O4)40.7H2O,” Journal of Solid State Chemistry, Vol. 178, No. 10, 2005, pp. 3046-3054. doi:10.1016/j.jssc.2005.06.031
[23] B. Arab-Chapelet, S. Grandjean, G. Nowogrocki and F. Abraham, “Synthesis and Characterization of Mixed An(IV) An(III) Oxalates (An(IV) = Th, Np, U or Pu and An(III) = Pu or Am),” Journal of Nuclear Materials, Vol. 373, No. 1-3, 2008, pp. 259-268. doi:10.1016/j.jnucmat.2007.06.004
[24] S. Costenoble, “Modélisation de la Coprécipitation d’Oxalates Mixtes d’Uranium et de Plutonium Dans le Cadre du Recyclage du Combustible Nucléaire: Solubilité des Solutions Solides Oxalate,” Ph.D. Thesis, Lille Sciences and Technologies University, Lille, 2009.
[25] A. Putnis, M. Prieto and L. Fernandez Diaz, “Fluid Supersaturation and Crystallization in Porous-Media,” Geological Magazine, Vol. 132, No. 1, 1995, pp. 1-13. doi:10.1017/S0016756800011389
[26] D. Parmentier, M. Bertrand and E. Plasari, “Discussion sur l’Expression de la Sursaturation au Cours de la Coprécipitation d’Oxalates d’Actinides,” Proceedings of Cristal 6, Marseille, 2010.
[27] B. Chapelet-Arab, G. Nowogrocki, F. Abraham and S. Grandjean, “U(IV)/LN(III) Unexpected Mixed Site in Polymetallic Oxalato Complexes. Part II. Substitution of U(IV) for Ln(III) in the New Oxalates (N2H5)Ln(C2O4)2nH2O (Ln = Nd, Gd),” Journal of Solid State Chemistry, Vol. 178, No. 10, 2005, pp. 3055-3065. doi:10.1016/j.jssc.2005.06.032
[28] S. Costenoble, S. Grandjean, P. Pochin, S. Picart and F. Abraham, “Determination and Modelling of the Solubility of Mixed Actinide(IV)-actinide(III) oxalates (An(IV) = U, Np, Pu and An(III) = Pu, Am),” Proceedings of Thermodynamics, London, 23-25 September 2009.
[29] M. Bertrand, P. Baron, E. Plasari and R. Lorrain, Patent No. EN 04/50637, 2004
[30] M. Bertrand, E. Plasari and P. Baron, “Methods for Characterization and Comparison of Mixing Efficiency of Different Confined Opposing Jet Mixing Devices,” Proceedings of the 12th European Conference on Mixing, Bologne, 2006.
[31] M. Bertrand-Andrieu, E. Plasari and P. Baron, “Determination of Nucleation and Crystal Growth Kinetics in Hostile Environment—Application to the Tetravalent Uranium Oxalate U(C2O4)26H2O,” Canadian Journal of Chemical Engineering, Vol. 82, No.5, 2004, pp. 930-938. doi:10.1002/cjce.5450820508
[32] A. E Nielsen, “Nucleation and Growth of Crystals at High Supersaturation,” Kristall und Technik, Vol. 4, No. 1, 1969, pp. 17-38. doi:10.1002/crat.19690040105
[33] M. Volmer and A. Weber, “Keimbildung in Tibersatting Gebilden,” Zeitschrift für physikalisch Chemie, Vol. 119, 1926, pp. 277-301.
[34] M. Bertrand, E. Plasari, O. Lebaigue, P. Baron, N. Lamarque and F. Ducros, “Hybrid LES-Multizonal Modelling of the Uranium Oxalate Precipitation,” Chemical Engineering Science, Vol. 77, 2012, pp 75-104. doi:10.1016/j.ces.2012.03.019

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.