The Electroreduction of Gadolinium and Dysprosium Ions in Equimolar NaCl-KCl Melt

Abstract

The mechanism of rare earth metals (Gd and Dy) chloride complexes electroreduction on the tungsten electrode in equimolar NaCl-KCl melt at 973 K has been studied by linear and cyclic voltammetry. Some kinetic parameters of processes were calculated. It was shown that the tungsten electrode was indifferent to gadolinium and dysprosium which were reduced on the surface. We found that the discharge mechanism of gadolinium and dysprosium chloride complexes was described by three-electron step when the steady-state conditions of polarization were limited by the mass transfer stage. The conditions of nonstationary polarization made the slowness of the charge transfer stage. The diffusion coefficient of gadolinium and dysprosium ions was calculated, the diffusion coefficient of GdCl3-6 ions was (0.9 ± 0.2) × 10-5 cm2.s-1, and for DYCI3-6 ions, it was (1.60 ± 0.2) × 10-5 сm2.s-1.


Share and Cite:

H. Kushkhov, A. Uzdenova, M. Saleh, A. Qahtan and L. Uzdenova, "The Electroreduction of Gadolinium and Dysprosium Ions in Equimolar NaCl-KCl Melt," American Journal of Analytical Chemistry, Vol. 4 No. 6A, 2013, pp. 39-46. doi: 10.4236/ajac.2013.46A006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Nishimura, T. Koyama, M. Iizuka and T. Tanaka, “Development of an Environmentally Benign Reprocessing Technology—Pyrometallurgical Reprocessing Technology,” Progress in Nuclear Energy, Vol. 32, No. 3/4, 1998, pp. 381-385. doi:10.1016/S0149-1970(97)00032-2
[2] J. J. Laidler, J. E. Battles, W. E. Miller, J. P. Ackerman and E. L. Carls, “Development of Pyroprocessing Technology,” Progress in Nuclear Energy, Vol. 31, No. 1-2, 1997, pp. 131-140. doi:10.1016/0149-1970(96)00007-8
[3] K. Kinoshita, T. Inoue, S. P. Fusselman, D. L. Grimmett, J. J. Roy, R. L. Gay, C. L. Krueger, C. R. Nabelek and T. S. Storvick, “Separation of Uranium and Transuranic Elements from Rare Earth Elements by Means of Multistage Extraction in LiCl-KCl/Bi System,” Journal of Nuclear Science and Technology, Vol. 36, No. 2, 1999, pp. 189- 193. doi:10.1080/18811248.1999.9726197
[4] F. Spedding and A. Dahan, “Rare Earth Metals,” Metallurgy, Moscow, 1965.
[5] H. Yosisuke, “Metal Technologies (Tokyo),” 1988.
[6] J. A. Plambeck, “Encyclopedia of Electrochemistry of the Elements,” Volume X Fused Salt Systems, Marcel Dekker, New York, 1976.
[7] C. V. Banks, M. R. Heusinkveld and J. W. O’Laughlin, “Absorption Spectra of the Lanthanides in Fused Lithium Chloride-Potassium Chloride Eutectic,” Analytical Chemistry, Vol. 33, No. 9, 1961, pp. 1235-1240. doi:10.1021/ac60177a032
[8] K. E. Johnson and J. R. Mackenzie, “Samarium, Europium and Ytterbium Electrode Potentials in LiCl-KCl Eutectic melt,” Journal of the Electrochemical Society, Vol. 116, No. 12, 1969, pp. 1697-1703. doi:10.1149/1.2411665
[9] T. Ogawa and K. Minato, “Dissolution and Formation of Nuclear Materials in Molten Media,” Pure Applied Chemistry, Vol. 73, No. 5, 2001, p. 799. doi:10.1351/pac200173050799
[10] K. Franklin, F. Kobayashi, M. Akabori, M. Takano, A. Itoh and T. Ogawa, “A Study on the Electrode Potential of Dysprosium Metal and Dysprosium Nitride in LiClKCl Eutectic Salt,” Paper Presented at the 31st Symposium on Molten Salt Chemistry, Sendai, 1999.
[11] J. Sheng, H. Yamana and H. Moriyama, “Activity Coefficients of Dy Dissolved in Liquid Bi,” Journal of Nuclear Materials, Vol. 301, No. 2-3, 2002, p. 220. doi:10.1016/S0022-3115(02)00702-X
[12] K. G. Chang, X. P. Ping Lu, Y. Y. Du and M. S. Zhao, “Determination of the Apparent Standard Potential of the Dy/Dy(III) System in the LiCl-KCl Eutectic,” Chinical Journal of Chemistry, Vol. 12, No. 6, 1994, p. 509. doi:10.1002/cjoc.19940120605
[13] I. Masatoshi, “Diffusion Coefficient of Cerium and Gadolinium in Molten LiCl-KCl,” Journal of the Electrochemical Society, Vol. 145, No. 1, 1998, pp. 84-88. doi:10.1149/1.1838216
[14] F. Lantelme and Y. Berghoute, “Electrochemical Studies of LaCl3 and GdCl3 Dissolved in Fused LiCl-KCl,” Journal of the Electrochemical Society, Vol. 146, No. 11, 1999, pp. 4137-4144. doi:10.1149/1.1392604
[15] M. R. Beimejo, J. Gomez, J. Medina, A. M. Martinez and Y. Castrillejo, “The Electrochemistry of Gadolinium in the Eutectic LiCl-KCl on W and Al Electrodes,” Journal of Electroanalytical Chemistry, Vol. 588, No. 2, 2006, pp. 253-266. doi:10.1016/j.jelechem.2005.12.031
[16] C. Caravaca, G. de Cordoba, M. J. Tomas and M. Rosado, “Electrochemical Behavior of Gadolinium Ion in Molten LiCl-KCl Eutectic,” Journal of Nuclear Materials, Vol. 360, No. 1, 2007, pp. 25-31. doi:10.1016/j.jnucmat.2006.08.009
[17] Y. Castrillejo’, M. R. Bermejo, A. M. Martinez, E. Barrado and P. Diaz Arocas, “Application of Electrochemical Techniques in Pirochemical Processes—Electrochemical Behavior of Rare Earth at W, Cd, Bi and Al Electrodes,” Journal of Nuclear Materials, Vol. 360, No. 1, 2007, pp. 32-42. doi:10.1016/j.jnucmat.2006.08.011
[18] Y. Castrillejoa’, M. R. Bermejoa, A. I. Barradoa, R. Pardoa, E. Barradoa and A. M. Martlnez, “Electrochemical Behavior of Dy in LiCl-KCl Eutectic Melt on W and Al Electrodes,” Electrochimica Acta, Vol. 50, No. 10, 2005. pр. 2047-2057.
[19] H. B. Kushkhov, A. S. Uzdenova, M. K. Vindizheva and A. V. Zimin, “Investigation of Electroreduction of Gadolinium and Samarium Ions in Halide Melts,” Ukr. Chemical Journal, Vol. 66, No. 7, 2000, pp. 50-54.
[20] H. B. Kushkhov and A. S. Uzdenova, “Electrochemical Behavior of Gadolinium Ion in Halide Melts,” Vestnik KBSU, Chemical Sciences, Nalchik, Vol. 2, 1997, pp. 13- 16.
[21] H. B. Kushkhov and A. S. Uzdenova, “Mechanism of Gadolinium Ion Electroreduction in Halide Melts,” Proceedings of the XI Conference on Physical Chemistry and Electrochemistry of Molten and Solid Electrolytes, Ekaterinburg, Vol. 1, 1998, pp. 245-246.
[22] H. B. Kushkhov, M. K. Vindizheva, R. A. Mukozheva, M. R. Tlenkopachev and M. N. Nafonova, “Investigation of Lanthanum Ions Electroreduction on Tungsten Electrode in Halide Melts at 823 K,” Melts, No. 1, 2012, pp. 1-10.
[23] H. B. Kushkhov, A. S. Uzdenova and D. L. Shogenova, “Electroreduction of Yttrium Ions on Silver and Tungsten Electrodes in Chloride and Chloride-Fluoride Melts at 823K,” Melts, No. 2, 2006, pp. 55-64.
[24] H. B. Kushkhov, Z. A. Zhanikaeva and S. I. Chuksin, “Electroreduction of Neodymium Ions in Chloride Melts,” Melts, No. 3, 2009, pp. 50-59.
[25] G. Brouwer, et al., “A Guide to Inorganic Synthesis,” M.: Mir, Vol. 4, 1985, 447 p.
[26] S. A. Kuznetsov and M. Gaune-Escard, “Redox Electrochemistry and Formal Standard Redox Potentials of the Eu(III)/Eu(II) Redox Couple in an Equimolar Mixture of Molten NaCl–KCl,” Electrochimica Acta, Vol. 46, No. 8, 2001, pp. 1101-1111. doi:10.1016/S0013-4686(00)00708-8
[27] S. Y. Griliches, “Electrochemical and Chemical Polishing,” L.: Mashinostroenie, 1987, pp. 107-128.
[28] Y. Heyrovsky and Y. Kuta, “Basics Polarography,” M.: Mir, 1965, 559 p.
[29] F. Stolz, “Electroanalytical Methods. Theory and Practice,” Publishing House, Beanom, Knowledge Laboratory, 2010, 326 p.
[30] E. Jaeger and F. Zalkind, “Methods of Electrochemistry Measurements,” M.: Mir, 1977, 585 p.
[31] P. Delahey, “New Apparatus and Methods in Electrochemistry,” 1957.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.