Share This Article:

Measurement of Volcanic SO2 Concentration in Miyakejima Using Differential Optical Absorption Spectroscopy (DOAS)

Abstract Full-Text HTML Download Download as PDF (Size:1409KB) PP. 36-46
DOI: 10.4236/ojap.2013.22006    4,013 Downloads   9,130 Views   Citations

ABSTRACT

Since the volcanic eruption in 2000, continuous monitoring of sulfur dioxide (SO2) gas has been conducted with in-situ samplers located along the seashore road in Miyakejima, a volcano island around 180 kmsouth of Tokyo. The purpose of these sampling measurements has been to issue warning on the hazardous air pollution to the local residents. Therefore, the resulting data do not provide direct information on pollution levels inside the restricted areas where high concentration of SO2 still takes place frequently. From the ecological point of view, it is desirable to have pollution data covering wider regions of the island. In this paper we report on our differential optical absorption spectroscopy (DOAS) measurements carried out inside the highly-polluted, restricted areas in Miyakejima in December 2009 and September 2010. The system is based on continuous light emitted from a xenon light sources, while detector setups consisting of a telescope and a compact spectrometer detect the light after passing a nearly horizontal optical path of460 m-1300 m. By virtue of the portability of the DOAS observation systems, we achieved the measurement of the concentrations inside the restricted districts in the eastern and southwestern parts of the island. The DOAS results in both of these districts revealed the occurrence of pollution of volcanic gas even when no pollution was observed at nearby sampling stations. In addition, simultaneous measurements with two nearly orthogonal DOAS paths were conducted for examining the spatial distribution of the volcanic gas over the spatial range of several hundred meters. The result of this two paths measurement has indicated the importance of orography, in addition to the wind speed and wind direction, in determining the spatial concentration of SO2 emitted from the volcano crater.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

I. Harada, Y. Yoshii, Y. Kaba, H. Saito, Y. Goto, I. Alimuddin, K. Kuriyama, I. Machida and H. Kuze, "Measurement of Volcanic SO2 Concentration in Miyakejima Using Differential Optical Absorption Spectroscopy (DOAS)," Open Journal of Air Pollution, Vol. 2 No. 2, 2013, pp. 36-46. doi: 10.4236/ojap.2013.22006.

References

[1] T. Kamijo and K. Hashiba, “Island Ecosystem and Vegetation Dynamics before and after the 2000-Year Eruption on Miyakejima Island, Japan with Implications for Conservation of Island’s Ecosystem,” Global Environmental Research, Vol. 7, No. 1, 2003, pp. 69-78.
[2] A. Yamanishi, T. Kamijo, A. Tsunekawa and H. Higuchi, “Monitoring of Vegetation Damage Caused by the 2000 Miyake Island Volcanic Eruption Using Satellite Remote Sensing and Field Surveys,” Journal of Agricultural Meteorology, Vol. 60, No. 6, 2005, pp. 1183-1188.
[3] I. Machida and S. Lee, “Delayed Impact of New Volcanic Ejecta on Ground Water Quality,” Ground Water, Vol. 46, No. 4, 2005, pp. 532-538. doi:10.1111/j.1745-6584.2008.00452.x
[4] K. Kazahaya, H. Shinohara, K. Uto, M. Odai, Y. Nakahori, H. Mori, H. Iino, M. Miyashita and J. Hirabayashi, “Gigantic SO2 Emission from Miyakejima Volcano, Japan, Caused by Caldera Collapse,” Geology, Vol. 32, No. 5, 2004, pp. 425-428.
[5] Japan Meteorological Agency, “Monthly Volcanic Activity Report (January, 2012),” 2012. http://www.seisvol.kishou.go.jp/tokyo/eng/volcano_activity/2012/2012_01_monthly.pdf
[6] N. Iino, K. Kinoshita and T. Yano, “Regional Characteristics of High Concentration Events of Volcanic Gas at Miyakejima,” Japan Society for Natural Disaster Science, Vol. 23, No. 4, 2005, pp. 505-520.
[7] T. Kamijo, M. Kawagoe, T. Kato, Y. Kiyohara, M. Matsuda, K. Hashiba and K. Shimada, “Destruction and Recovery of Vegetation Caused by the 2000-Year Eruption on Miyakejima Island, Japan,” Journal of Disaster Research, Vol. 3, No. 3, 2008, pp. 226-235.
[8] Y. Yoshii, H. Kuze and N. Takeuchi, “Long-Path Measurement of Atmospheric NO2 with an Obstruction Flash0-light and a Charge Coupled Device Spectrometer,” Applied Optics, Vol. 42, No. 21, 2003, pp. 4362-4368. doi:10.1364/AO.42.004362
[9] F. Si, H. Kuze, Y. Yoshii, M. Nemoto, N. Takeuchi, T. Kimura, T. Umekawa, T. Yoshida, T. Hioki, T. Tsutsui and M. Kawasaki, “Measurement of Regional Distribution of Atmospheric NO2 and Aerosol Particles with Flashlight Long-Path Optical Monitoring,” Atmospheric Environment, Vol. 39, No. 27, 2005, pp. 4959-4968.
[10] K. Kuriyama, Y. Kaba, Y. Yoshii, S. Miyazawa, N. Manago, I. Harada and H. Kuze, “Pulsed Differential Optical Absorption Spectroscopy Applied to Air Pollution Measurement in Urban Troposphere,” Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 112, No. 2, 2011, pp. 277-284. doi:10.1016/j.jqsrt.2010.06.010
[11] D. Perner, D. H. Ehhalt, H. W. Patz, U. Platt, E. P. Roth and A. Volz, “OH Radicals in the Lower Troposphere,” Geophysical Research Letters, Vol. 3, No. 8, 1976, pp. 466-468. doi:10.1029/GL003i008p00466
[12] D. Perner and U. Platt, “Detection of Nitrous Acid in the Atmosphere by Differential Optical Absorption,” Geophysical Research Letters, Vol. 6, No. 12, 1979, pp. 917- 920. doi:10.1029/GL006i012p00917
[13] U. Platt and D. Perner, “Direct Measurements of Atmospheric CH2O, HNO2, O3, NO2 and SO2 by Differential Optical Absorption in the Near UV,” Journal of Geo- physical Research, Vol. 85, No. C12, 1980, pp.7453-7458. doi:10.1029/JC085iC12p07453
[14] R. E. Stoiber, L. L. Malinconico and S. N. Williams, “Use of the Correlation Spectrometer at Volcanoes,” In: H. Tazieff and H, J. C. Sabroux, Eds., Forecasting volcanic events. Elsevier, Amsterdam, 1983, pp. 425-444.
[15] P. Francis, C. Oppenheimer and D. Stevenson, “Endogenous Growth of Persistently Active Volcanoes,” Nature, Vol. 366, No. 6455, 1993, pp. 554-557. doi:10.1038/366554a0
[16] K. Kazahaya, H. Shinohara and G. Saito, “Excessive Degassing of Izu-Oshima Volcano: Magma Convection in a Conduit,” Bulletin of Volcanology, Vol. 56, No. 3, 1994, pp. 207-216. doi:10.1007/BF00279605
[17] P. Allard, “Endogenous Magma Degassing and Storage at Mount Etna,” Geophysical Research Letters, Vol. 24, No. 17, 1997, pp. 2219-2222. doi:10.1029/97GL02101
[18] A. J. S. McGonigle, A. Aiuppa, M. Ripepe, E. P. Kantzas and G. Tamburello, “Spectroscopic Capture of 1 Hz Volcanic SO2 Fluxes and Integration with Volcano Geo- physical Data,” Geophysical Research Letters, Vol. 36, No. 21, 2009, Article ID: L21309 doi:10.1029/2009GL040494
[19] J. Stix, G. Williams-Jones and C. Hickson, “Applying the COSPEC at Active Volcanoes,” In: G. Williams-Jones, J. Stix and C. Hickson, Eds., The COSPEC Cookbook: Making SO2 Measurements at Active Volcanoes, IAVCEI, methods in volcanology, Vol. 1, 2008, pp. 121-167.
[20] B. Galle, C. Oppenheimer, A. Geyer, A. McGonigle, M. Edmonds and L. A. Horrocks, “A Miniaturized Ultraviolet Spectrometer for Remote Sensing of SO2 Fluxes: A New Tool for Volcano Surveillance,” Journal of Volcanology and Geothermal Reseach, Vol. 119, No. 1-4, 2003, pp. 241-254. doi:10.1016/S0377-0273(02)00356-6
[21] L. A. Rodríguez, I. M. Watson, M. Edmonds, G. Ryan, V. Hards, C. M. M. Oppenheimer and G. J. S. Bluth, “SO2 Loss Rates in the Plume Emitted by Soufriere Hills Vol- cano, Montserrat,” Journal of Volcanology and Geother- mal Research, Vol. 173, No. 1-2, 2008, pp. 135-147. doi:10.1016/j.jvolgeores.2008.01.003
[22] T. Mori and M. Burton, “The SO2 Camera: A Simple, Fast and Cheap Method for Ground-based Imaging of SO2 in Volcanic Plumes,” Geophysical Research Letters, Vol. 33, No. 24, 2006, Article ID: L24804. doi:10.1029/2006GL027916
[23] G. J. S. Bluth, J. M. Shannon, I. M. Watson, A. J. Prata and V. J. Realmuto, “Development of an Ultra-Violet Digital Camera for Volcanic SO2 Imaging,” Journal of Volcanology and Geothermal Research, Vol. 161, No. 1- 2, 2007, pp. 47-56. doi:10.1016/j.jvolgeores.2006.11.004
[24] M. P. Dalton, I. M. Watson, P. A. Nadeau, C. Werner, W. Morrow and J. M. Shannon, “Assessment of the UV Ca- mera Sulfur Dioxide Retrieval for Point Source Plumes,” Journal of Volcanology and Geothermal Research, Vol. 188, No. 4, 2009, pp. 358-366. doi:10.1016/j.jvolgeores.2009.09.013
[25] M. Edmonds, R. A. Herd, B. Galle and C. M. Oppenhei- mer, “Automated, High Time-Resolution Measurements of SO2 Flux at Soufrière Hills Volcano, Montserrat,” Bulletin of Volcanology, Vol. 65, No. 8, 2003, pp. 578- 586. doi:10.1007/s00445-003-0286-x
[26] U. Platt, “Differential Optical Absorption Spectroscopy (DOAS),” In: M. W. Sigrist, Ed., Air monitoring by spectroscopic techniques, Chemical Analysis Series, Vol. 127. Wiley, New York, 1994, pp. 27-84.
[27] T. Miyazaki, “Features of Historical Eruptions at Miya- kejima Volcano,” Volcanological Society of Japan, Vol. 2, No. 29, 1984, pp. 1-15.
[28] N. Iino and C. Kanagaki, “Teaching Materials Using Volcanic Ejecta and Its Environmental Impact,” Kuma- moto University Repository System, Vol. 58, No. 1, 2009, pp. 45-53.
[29] Miyake Village Office. http://www.miyake-so2.jp/index.php
[30] J. P. Pommereau and F. Goutail, “O3 and NO2 Ground Based Measurement by Visible Spectrometry during Artic Winter and Spring 1988,” Geophysical Research Letters, Vol. 15, No. 8, 1988, pp. 891-894.
[31] J. M. Plane and C. Nien, “Differential Optical Absorption Spectrometer for Measuring Atmospheric Trace Gases,” Review of Scientific Instruments, Vol. 63, No. 3, 1992, pp. 1867-1876. doi:10.1063/1.1143296
[32] H. Edner, P. Ragnarson, S. Spannare and S. Svanberg, “Differential Optical Absorption Spectroscopy (DOAS) System for Urban Atmospheric Pollution Monitoring,” Applied Optics, Vol. 32, No. 3, 1993, pp. 327-333. doi:10.1364/AO.32.000327
[33] A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer and R. Colin, “SO2 Absorption Cross Section Measure- ment in the UV using a Fourier Transform Spectrometer,” Journal of Geophysical Research, Vol. 99, No. D12, 1994, pp. 25599-25605. doi:10.1029/94JD02187

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.