Share This Article:

Existence and Uniqueness of Positive (Almost) Periodic Solutions for a Neutral Multi-Species Logarithmic Population Model with Multiple Delays and Impulses

Abstract Full-Text HTML XML Download Download as PDF (Size:283KB) PP. 247-262
DOI: 10.4236/ojapps.2013.32032    3,040 Downloads   5,069 Views   Citations

ABSTRACT

In this paper, by using the contraction mapping principle and constructing a suitable Lyapunov functional, we established a set of easily applicable criteria for the existence, uniqueness and global attractivity of positive periodic solution and positive almost periodic solution of a neutral multi-species Logarithmic population model with multiple delays and impulses. The results improve and generalize the known ones in [1], as an application, we also give an example to illustrate the feasibility of our main results.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Z. Luo, J. Huang, L. Luo and B. Dai, "Existence and Uniqueness of Positive (Almost) Periodic Solutions for a Neutral Multi-Species Logarithmic Population Model with Multiple Delays and Impulses," Open Journal of Applied Sciences, Vol. 3 No. 2, 2013, pp. 247-262. doi: 10.4236/ojapps.2013.32032.

References

[1] Q. Wang, Y. Wang and B. X. Dai, “Existence and Uniqueness of Positive Periodic Solutions for a Neutral Logarithmic Population Model,” Applied Mathematics and Computation, Vol. 213, No. 1, 2009, pp. 137-147. doi:10.1016/j.amc.2009.03.028
[2] L. Berezansky and E. Braverman, “Explicit Conditions of Exponential Stability for a Linear Impulsive Delay Differential Equation,” Journal of Mathematical Analysis and Applications, Vol. 214, No. 2, 1997, pp. 439-458. doi:10.1006/jmaa.1997.5578
[3] H. Fang, “Positive Periodic Solutions of N-Species Neutral Delay Systems,” Czechoslovak Mathematical Journal, Vol. 53, No. 3, 2003, pp. 561-570. doi:10.1023/B:CMAJ.0000024503.03321.b1
[4] F. D. Chen, “On a Nonlinear Nonautonomous Predator— Prey Model with Diffusion and Distributed Delay,” Journal of Computational and Applied Mathematics, Vol. 180, No. 1, 2005, pp. 33-49. doi:10.1016/j.cam.2004.10.001
[5] H. Fang and J. B. Li, “On the Existence of Periodic Solutions of a Neutral Delay Model of Single-Species Popula tion Growth,” Journal of Mathematical Analysis and Applications, Vol. 259, No. 1, 2001, pp. 8-17. doi:10.1006/jmaa.2000.7340
[6] F. D. Chen, “Periodic Solutions and Almost Periodic Solutions for a Delay Multispecies Logarithmic Population Model,” Applied Mathematics and Computation, Vol. 171, No. 2, 2005, pp. 760-770. doi:10.1016/j.amc.2005.01.085
[7] Z. H. Yang and J. D. Cao, “Positive Periodic Solutions of Neutral Lotka-Volterra System with Periodic Delays,” Applied Mathematics and Computation, Vol. 149, No. 3, 2004, pp. 661-687. doi:10.1016/S0096-3003(03)00170-X
[8] Y. K. Li, “On a Periodic Neutral Delay Logarithmic Population Model,” Journal of Systems Science and Complexity, Vol. 19, No. 1, 1999, pp. 34-38. (in Chinese)
[9] S. P. Lu and W. G. Ge, “Existence of Positive Periodic Solutions for Neutral Logarithmic Population Model with Multiple Delays,” Journal of Computational and Applied Mathematics, Vol. 166, No. 2, 2004, pp. 371-383. doi:10.1016/j.cam.2003.08.033
[10] F. D. Chen, “Periodic Solutions and Almost Periodic Solutions of a Neutral Multispecies Logarithmic Population Model,” Applied Mathematics and Computation, Vol. 176, No. 2, 2006, pp. 431-441. doi:10.1016/j.amc.2005.09.032
[11] R. E. Gaines and J. L. Mawkin, “Coincidence Degree and Nonlinear Differential Equations,” Springer-Verlag, Berlin, 1977.
[12] X. Z. Liu and G. Ballinger, “Existence and Continuability of Solutions for Differential Equations with Delay and State-Dependent Impulses,” Nonlinear Analysis: Theory, Methods & Applications, Vol. 51, No. 4, 2002, pp. 633-647. doi:10.1016/S0362-546X(01)00847-1
[13] B. G. Zhang and Y. J. Liu, “Global Attractivity for Certain Impulsive Delay Differential Equations,” Nonlinear Analysis: Theory, Methods & Applications, Vol. 52, No. 3, 2003, pp. 725-736. doi:10.1016/S0362-546X(02)00129-3
[14] Y. J. Zhang, B. Liu and L. S. Chen, “Extinction and Permanence of a Two-Prey One-Predator System with Impulsive Effect,” Mathematical Medicine and Biology, Vol. 20, No. 4, 2003, pp. 309-325. doi:10.1093/imammb/20.4.309
[15] J. R. Yan, “Existence of Positive Periodic Solutions of Impulsive Functional Differential Equations with Two Parameters,” Journal of Mathematical Analysis and Applications, Vol. 327, No. 2, 2007, pp. 854-868. doi:10.1016/j.jmaa.2006.04.018
[16] W. M. Wang, H. L. Wang and Z. Q. Li, “Chaotic Behavior of a Three-Species Beddington-Type System with Impulsive Peturbations,” Chaos, Solitons & Fractals, Vol. 37, No. 2, 2008, pp. 438-443. doi:10.1016/j.chaos.2006.09.013
[17] J. S. Yu, “Explicit Conditions for Stability of Nonlinear Scalar Delay Differential Equations with Impulses,” Non linear Analysis: Theory, Methods & Applications, Vol. 46, No. 1, 2001, pp. 53-67. doi:10.1016/S0362-546X(99)00445-9
[18] X. N. Liu and L. S. Chen, “Complex Dynamics of Holling Type II Lotka—Volterra Predator—Prey System with Impulsive Perturbations on the Predator,” Chaos, Solitons & Fractals, Vol. 16, No. 2, 2003, pp. 311-320. doi:10.1016/S0960-0779(02)00408-3
[19] Y. J. Liu and W. G. Ge, “Stability Theorems and Existence Results for Periodic Solutions of Nonlinear Impulsive Delay Differential Equations with Variable Coefficients,” Nonlinear Analysis: Theory, Methods & Applications, Vol. 57, No. 3, 2004, pp. 363-399. doi:10.1016/j.na.2004.02.020
[20] J. R. Yan and A. M. Zhao, “Oscillation and Stability of Linear Impulsive Delay Differential Equations,” Journal of Mathematical Analysis and Applications, Vol. 227, No. 1, 1998, pp. 187-194. doi:10.1006/jmaa.1998.6093
[21] V. Lakshmikantham, D. Bainov and P. Simeonov, “Theory of Impulsive Differential Equations,” World Scientific Publisher, Singapore City, 1989.
[22] A. M. Samoikleno and N. A. Perestyuk, “Impulsive Differential Equations,” World Scientific, Singapore City, 1995.
[23] J. J. Nieto and R. Rodriguez-Lopez, “Periodic Boundary Value Problem for Non-Lipschitzian Impulsive Functional Differential Equations,” Journal of Mathematical Analysis and Applications, Vol. 318, No. 2, 2006, pp. 593-610. doi:10.1016/j.jmaa.2005.06.014
[24] H. F. Huo, “Existence of Positive Periodic Solutions of a Neutral Delay Lotka-Volterra Systems with Impulses,” Computers & Mathematics with Applications, Vol. 48, No. 12, 2004, pp. 1833-1846. doi:10.1016/j.camwa.2004.07.009
[25] A. Ouahab, “Existence and Uniqueness Results for Impulsive Functional Differential Equations with Scalar Multiple Delay and Infinite Delay,” Nonlinear Analysis: Theory, Methods & Applications, Vol. 67, No. 4, 2007, pp. 1027-1041. doi:10.1016/j.na.2006.06.033
[26] F. D. Chen, “On the Existence and Uniqueness of Periodic Solutions of a Kind of Integro-Differential Equations,” Acta Mathematica Sinica, Vol. 47, 2004, pp. 973-985. (in Chinese)
[27] H. Q. Xie and Q. Y. Wang, “Exponential Stability and Periodic Solution for Cellular Neural Networks with Time Delay,” Journal of Huaqiao University, Vol. 25, 2004, pp. 22-26. (in Chinese)
[28] S. P. Lu and W. G. Ge, “Existence of Positive Periodic Solutions for Neutral Population Model with Multiple Delays,” Applied Mathematics and Computation, Vol. 153, No. 3, 2004, pp. 885-892. doi:10.1016/S0096-3003(03)00685-4
[29] Y. H. Xia, “Positive Periodic Solutions for a Neutral Impulsive Delayed Lotka-Volterra Competition Systems with the Effect of Toxic Substance,” Nonlinear Analysis: Real World Applications, Vol. 8, No. 1, 2007, pp. 204-221. doi:10.1016/j.nonrwa.2005.07.002
[30] L. Barbalat, “Systemes d’Equations Differentielles d’Oscil lations Nonlineaires,” Revue Roumaine de Mathématique Pures et Appliquées, Vol. 4, 1959, pp. 267-270.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.