Prepared of Nd: TiO2 Nano Particles Powder as IR Filter via Sol-Gel

Abstract

Doped and undoped nanostructured titanium dioxides were prepared via Sol-Gel method under varying conditions to investigate the effects of neodymium ion doping on the titania optical properties in MID IR range. X-ray diffraction analyses show that the amorphous structure of the prepared samples turns to anatas polycrystalline structure after annealing process at 500°C. FTIR spectrums for pure and doped samples after annealing show a single transmission peak at wave number around 1200 cm-1. The transmission rate of the peak depends on Nd3+ concentrations and its value rises from 1.82% (for pure TiO2) to 86.9% (for doped with 12%wt Nd3+). Shifting on the peak occurs with a maximal shift at 7%wt Nd3+ and then becomes stable at higher concentration. FTIR spectra give a good indication in the direction of preparation of optical band-pass filter at a wavelength around 8.34 μm (~1200 cm-1).

Share and Cite:

M. Hamza, F. Saiof, A. Al-ithawi, M. Ameen and H. Yaseen, "Prepared of Nd: TiO2 Nano Particles Powder as IR Filter via Sol-Gel," Advances in Materials Physics and Chemistry, Vol. 3 No. 2, 2013, pp. 174-177. doi: 10.4236/ampc.2013.32024.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. J. Livage, M. Henry, J. P. Jolivet, et al., “Fine Particles Part II: Formation Mechanisms and Application,” MRS Bulletin XV, Vol. 1, 1990, pp. 18-25.
[2] B. J. J. Zelinski and D. R. Uhlmann, “Gel Technology in Ceramics,” Journal of Physics and Chemistry of Solids, Vol. 45, No. 10, 1984, pp. 1069-1090. doi:10.1016/0022-3697(84)90049-0
[3] J. Livage, M. Henry and C. Sanchez, “Sol-Gel Chemistry of Transition Metal Oxides,” Progress in Solid State Chemistry, Vol. 18, No. 4, 1988, pp. 259-342. doi:10.1016/0079-6786(88)90005-2
[4] S. Sakka and K. Kamiya, “Glasses from Metal Alcoholates,” Journal of Non-Crystalline Solids, Vol. 42, No. 1-3, 1980, pp. 403-422. doi:10.1016/0022-3093(80)90040-X
[5] E. Yoldas, “Preparation of Glasses and Ceramics from Metal-Organic Compounds,” Journal of Materials Science, Vol. 12, No. 6, 1977, pp. 1203-1208. doi:10.1007/BF02426858
[6] J. P. Boilot, F. Chaput, T. Gacoin, et al., “Organic-Inorganic Solids by Sol-Gel and Optical Applications,” C. R. Acad. Sci. Paris, Vol. 322b, 1996, pp. 27-43.
[7] M. Pal, J. G. Serrano, P. Santiago, et al., “Size-Controlled Synthesis of Spherical TiO2 Na-noparticles: Morphology, Crystallization, and Phase Transition,” The Journal of Physical Chemistry C, Vol. 111, No. 1, 2007, pp. 96-102. doi:10.1021/jp0618173
[8] X.-W. Wu, D.-J. Wu and X.-J. Liu, “Silver-Doping Induced Lattice Istortion in TiO2 Nanoparticles,” Chinese Physics Letters, Vol. 26, No. 7, 2009, Article ID: 077809. doi:10.1088/0256-307X/26/7/077809
[9] J. Banfield and A. Navrotsky, “Nanoparticles and the Environment,” Mineralogical Society of America, Chantilly, 2001.
[10] D. Huang, Z. D. Xiao, J. H. Gu, N. P. Huang and C. W. Yuan, “TiO2 Thin Films Formation on Industrial Glass through Self-Assembly Processing,” Thin Solid Films, Vol. 305, No. 1-2, 1997, pp. 110-115. doi:10.1016/S0040-6090(97)00202-2
[11] W. Li, Y. Wang, H. Lin, S. I. Shah, C. P. Huang, D. J. Doren, S. A. Rykov, J. G. Chen and M. A. Barteau, “Band Gap Tailoring of Nd3-Doped TiO2 Nanoparticles,” Applied Physics Letters, Vol. 83, No. 20, 2003, pp. 4143-4145 doi:10.1063/1.1627962
[12] S. I. Shah, W. Li, C.-P. Huang, O. Jung and C. Ni, “Study of Nd3+, Pd2+, Pt4+, and Fe3+ Dopant Effect on Photoreactivity of TiO2 Nanoparticles,” Proceedings of the National Academy of Sciences of the USA, Vol. 99, No. 2, 2002, pp. 6482-6486. doi:10.1073/pnas.052518299
[13] X. Chen and W. Luo, “Optical Spectroscopy of Rare Earth Ion-Doped TiO2 Anophosphors,” Journal of Nanoscience and Nanotechnology, Vol. 10, No. 3, 2010, pp. 14821494.
[14] A. Burns, G. Hayes, W. Li, J. Hirvonen, J. D. Demaree and S. I. Shah, “Neodymium Ion Dopant Effects on the Phase Transformation in Sol-Gel Derived Titania Nanostructures,” Materials Science and Engineering B, Vol. 111, No. 2-3, 2004, pp. 150-155. doi:10.1016/j.mseb.2004.04.008
[15] R. D. Shannon, “Crystal Physics, Diffraction, Theoretical and General Crystallography,” Acta Crystallographica Section A, Vol. 32, No. 5, 1976, pp. 751-767. doi:10.1107/S0567739476001551
[16] K. K. Gupta, M. Jassal and A. K. Agrawal, “Sol-Gel Derived Titanium Dioxide Finishing of Cotton Fabric for Self Cleaning,” Indian Journal of Fibre & Textile Research, Vol. 33, 2008, pp. 443-450.
[17] S. Adnan, A. R. Fadhil and A. A. Majida, “TiO2 Nanoparticles Prepared by Sol-Gel,” Journal of Materials Science and Engineering, Vol. 3, No. 12, 2009, pp. 81-84
[18] H. Nur, “Modification of Titanium Surface Species of Titania by Attachment of Silica Nanoparticles,” Materials Science and Engineering B, Vol. 133, No. 1-3, 2006, pp. 49-54. doi:10.1016/j.mseb.2006.05.003
[19] A. Merouani and H. Amardjia-Adnani, “Spectroscopic FTIR Study of TiO2 Films Prepared by Sol-Gel Method,” International Scientific Journal for Alternative Energy and Ecology, Vol. 6, No. 62, 2008, pp. 151-154.
[20] Y.-G. Kwon, S.-Y. Choi, E.-S. Kang and S.-S. Baek, “Ambient-Dried Silica Aerogel Doped with TiO2 Powder for Thermal Insulation,” Journal of Materials Science, Vol. 35, No. 24, 2000, pp. 6075-6079. doi:10.1023/A:1026775632209
[21] M. A. Noginov, N. E. Noginova, H. J. Caulfield, P. Venkateswarl and M. Mahdi, “Line Narrowing in the Dye Solution with Scattering Centers,” Optics Communications, Vol. 118, No. 3-4, 1995, pp. 430-437. doi:10.1016/0030-4018(95)00177-A

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.