Share This Article:

Differences in Morphological, Physiological and Growth Traits between Two Endemic Subspecies of Brassica rupestris Raf.: Implications for Their Conservation

Abstract Full-Text HTML Download Download as PDF (Size:509KB) PP. 42-50
DOI: 10.4236/ajps.2013.46A007    2,852 Downloads   5,108 Views   Citations


The goal of this work was to analyze the phenological and physiological responses of Brassica rupestris Raf. subsp. hispida Raimondo & Mazzola and Brassica rupestris Raf. subsp. rupestris to environmental factors also in consideration of global change. We used seedlings of the two subspecies originated from wild plants from the natural habitats in Sicily and cultivated in the Botanical Garden of Rome. Leaf morphological and physiological traits and growth dynamic were analyzed as well as the response to an imposed water stress experiment. The results underlined a higher relative growth rate in plant height (RGRH, cm·cm-1·d-1) in B. rupestris subsp. rupestris also attested by the highest plant height (H, cm), leaf area (LA, cm2), specific leaf area (SLA, cm·g-1), total leaf area per plant (TLA, cm2) and total plant dry mass (PDM, g plant-1). Moreover, the significantly highest net photosynthetic rates (A, μmol CO2 m-2·s-1) during the study period of this subspecies was related to the high Chlorophyll content (Chl, SPAD units). B. rupestris subsp. rupestris was also the most tolerant subspecies to imposed water stress showing the highest relative water content (RWC, %), A and water use efficiency (WUE, μmol·mmol-1).

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Crescente and L. Gratani, "Differences in Morphological, Physiological and Growth Traits between Two Endemic Subspecies of Brassica rupestris Raf.: Implications for Their Conservation," American Journal of Plant Sciences, Vol. 4 No. 6A, 2013, pp. 42-50. doi: 10.4236/ajps.2013.46A007.


[1] R. S. Purty, G. Kumar, S. L. Singla-Pareek and A. Pareek, “Towards Salinity Tolerance in Brassica: An Overview,” Physiology and Molecular Biology of Plants, Vol. 14, No. 1-2, 2008, pp. 39-49. doi:10.1007/s12298-008-0004-4
[2] A. Geraci, I. Divaret, F. M. Raimondo and A. M. Chèvre, “Genetic Relationships between Sicilian Wild Populations of Brassica Analysed with RAPD Markers,” Plant Breeding, Vol. 120, No. 3, 2001, pp. 193-196. doi:10.1046/j.1439-0523.2001.00589.x
[3] A. Geraci, A. M. Chèvre, I. Divaret, F. Eber and F. M. Raimondo, “Isozyme Analysis of Genetic Diversity in Wild Sicilian Populations of Brassica Sect. Brassica in View of Genetic Resources Management,” Genetic Resources and Crop Evolution, Vol. 51, No. 2, 2004, pp. 137-146. doi:10.1023/B:GRES.0000020855.61542.ef
[4] J. Mei, Q. Li, X. Yang, L. Qian, L. Liu, J. Yin, M. Frauen, J. Li and W. Qian, “Genomic Relationships between Wild and Cultivated Brassica oleracea L. with Emphasis on the Origination of Cultivated Crops,” Genetic Resources and Crop Evolution, Vol. 57, No. 5, 2010, pp. 687-692. doi:10.1007/s10722-009-9504-5
[5] S. Snogerup, M. Gustafsson and R. von Bothmer, “Brassica sect. Brassica (Brassicaceae). I Taxonomy and Variation,” Willdenowia, Vol. 19, No. 2, 1990, pp. 271-365.
[6] F. M. Raimondo, P. Mazzola and D. Ottonello, “On the Taxonomy and Distribution of Brassica sect. Brassica (Cruciferae) in Sicily,” Flora Mediterranea, Vol. 1, No. 1, 1991, pp. 63-86.
[7] F. M. Raimondo and P. Mazzola, “A New Taxonomic Arrangement in the Sicilian Members of Brassica L. sect. Brassica,” Lagascalia, Vol. 19, No. 1-2, 1997, pp. 831-838.
[8] F. Conti, A. Manzi and F. Pedrotti, “Liste Rosse Regionali delle Piante d’Italia,” TIPAR, Roma, 1997.
[9] F. Conti, G. Abbate, A. Alessandrini and C. Blasi, “An Annotated Checklist of the Italian Vascular Flora,” Palombi Editori, Roma, 2005.
[10] F. M. Raimondo, L. Gianguzzi and V. Ilardi, “Inventario delle Specie a Rischio Nella Flora Vascolare Nativa Della Sicilia,” Quaderni di Botanica Ambientale e Applicata, Vol. 3, No. 1, 1994, pp. 65-132.
[11] N. C. A. Pitman and P. M. Jørgensen, “Estimating the Size of the World’s Threatened Flora,” Science, Vol. 298, No. 5595, 2002, pp. 989-989. doi:10.1126/science.298.5595.989
[12] K. M. Robbirt, D. L. Roberts and J. A. Hawkins, “Comparing IUCN and Probabilistic Assessments of Threat: Do IUCN Red List Criteria Conflate Rarity and Threat?” Biodiversity and Conservation, Vol. 15, No. 6, 2006, pp. 1903-1912. doi:10.1007/s10531-005-4307-2
[13] S. L. Pimm, “Extinction,” In: W. J. Sutherland, Ed., Conservation Science and Action, Blackwell Science, Ltd., Oxford, 1998, pp. 20-38. doi:10.1002/9781444313499.ch2
[14] L. Gratani, M. F. Crescente, G. Fabrini and L. Varone, “Growth Pattern of Bidens cernua L.: Relationships between RGR and Its Physiological and Morphological Components,” Photosynthetica, Vol. 46, No. 2, 2008, pp. 179-184. doi:10.1007/s11099-008-0029-5
[15] J. F. Scheepens, E. S. Frei and J. Stöcklin, “Genotypic and Environmental Variation in Specific Leaf Area in a Widespread Alpine Plant after Transplantation to Different Altitudes,” Oecologia, Vol. 164, No. 1, 2010, pp. 141-150. doi:10.1007/s00442-010-1650-0
[16] E. H. DeLucia, T. W. Sipe, J. Herrick and H. Maherali, “Sapling Biomass Allocation and Growth in the Understory of a Deciduous Hardwood Forest,” American Journal of Botany, Vol. 85, No. 7, 1998, pp. 955-963. doi:10.2307/2446362
[17] G. C. Evans, “The Quantitative Analysis of Plant Growth,” Blackwell, Oxford, 1972.
[18] D. A. King, “Influence of Light Level on the Growth and Morphology of Saplings in a Panamanian Forest,” American Journal of Botany, Vol. 81, No. 8, 1994, pp. 948-957. doi:10.2307/2445287
[19] D. A. King, “Branch Growth and Biomass Allocation in Abies amabilis Saplings in Contrasting Light Environments,” Tree Physiology, Vol. 17, No. 4, 1997, pp. 251-258. doi:10.1093/treephys/17.4.251
[20] P. B. Reich, B. D. Kloeppel, D. S. Ellsworth and M. B. Walters, “Different Photosynthesis-Nitrogen Relations in Deciduous Hardwood and Evergreen Coniferous Tree Species,” Oecologia, Vol. 104, No. 1, 1995, pp. 24-30.
[21] R. D. Marquard and J. L. Tipton, “Relationship between Extractable Chlorophyll and an in Situ Method to Estimate Leaf Greenness,” Hortscience, Vol. 22, No. 6, 1987, p. 1327.
[22] R. E. Martin, P. Gregory and L. S. Asner, “Genetic Variation in Leaf Pigment, Optical and Photosynthetic Function among Diverse Phenotypes of Metrosideros polymorpha Grown in a Common Garden,” Oecologia, Vol. 151, No. 3, 2007, pp. 387-400. doi:10.1007/s00442-006-0604-z
[23] V. O. Sadras, L. Echarte and F. H. Andrade, “Profiles of Leaf Senescence during Reproductive Growth of Sunflower and Maize,” Annals of Botany, Vol. 85, No. 2, 2000, pp. 187-195. doi:10.1006/anbo.1999.1013
[24] P. Pesoli, L. Gratani and W. Larcher, “Responses of Quercus ilex from Different Provenances to Experimentally Imposed Water Stress,” Biologia Plantarum, Vol. 46, No. 4, 2003, pp. 577-581. doi:10.1023/A:1024823830225
[25] M. A. Lo Gullo and S. Salleo, “Different Strategies of Drought Resistance in Three Mediterranean sclerophyllous Trees Growing in the Same Environmental Conditions,” New Phytologist, Vol. 108, No. 3, 1988, pp. 267-276. doi:10.1111/j.1469-8137.1988.tb04162.x
[26] W. Larcher, “Physiological Plant Ecology,” Springer, Berlin, 2003. doi:10.1007/978-3-662-05214-3
[27] M. A. Huston, “Biological Diversity: The Coexistence of Species on Changing Landscapes,” Cambridge University Press, Cambridge, 1994.
[28] D. J. Currie, “Energy and Large-Scale Patterns of Animal- and Plant-Species Richness,” American Naturalist, Vol. 137, No. 1, 1991, pp. 27-49.
[29] R. G. Pearson, T. P. Dawson and C. Liu, “Modelling Species Distributions in Britain: A Hierarchical Integration of Climate and Land-Cover Data,” Ecography, Vol. 27, No. 3, 2004, pp. 285-298. doi:10.1111/j.0906-7590.2004.03740.x
[30] S. Kivinen, M. Luoto, R. K. Heikkinen, K. Saarinen and T. Ryttäri, “Threat Spots and Environmental Determinants of Red-Listed Plant, Butterfly and Bird Species In Boreal Agricultural Environments,” Biodiversity and Conservation, Vol. 17, No. 13, 2008, pp. 3289-3305. doi:10.1007/s10531-008-9429-x
[31] L. Gratani, P. Pesoli, M. F. Crescente, K. Aichner and W. Larcher, “Photosynthesis as a Temperature Indicator in Quercus ilex L.,” Global and Planetary Change, Vol. 24, No. 2, 2000, pp. 153-163.
[32] M. F. Crescente, L. Gratani and W. Larcher, “Shoot Growth Efficiency and Production of Quercus ilex L. in Different Climates,” Flora, Vol. 197, No. 1, 2002, pp. 2-9. doi:10.1078/0367-2530-00007
[33] C. P. Osborne, P. L. Mitchell, J. E. Sheehy and F. I. Woodward, “Modelling the Recent Historical Impacts of Atmospheric CO2 Climate Change on Mediterranean Vegetation,” Global Change Biology, Vol. 6, No. 4, 2000, pp. 445-458. doi:10.1046/j.1365-2486.2000.00336.x
[34] L. Gratani, M. Meneghini, P. Pesoli and M. F. Crescente, “Structural and Functional Plasticity of Quercus ilex Seedlings of Different Provenances in Italy,” Trees-Structure and Function, Vol. 17, No. 6, 2003, pp. 515-521. doi:10.1007/s00468-003-0269-8
[35] J. Flexas, J. Galmés, M. Ribas-Carbó and H. Medrano, “The Effects of Drought in Plant Respiration,” Advances in Photosynthesis and Respiration, Vol. 18, 2005, pp. 85-94. doi:10.1007/1-4020-3589-6_6
[36] J. Piñol, J. Terradas and F. Lloret, “Climate Warming, Wildfire Hazard, and Wildfire Occurrence in Coastal Eastern Spain,” Climatic Change, Vol. 38, No. 3, 1998, pp. 345-357. doi:10.1023/A:1005316632105
[37] R. Ogaya and J. Peñuelas, “Contrasting Foliar Responses to Drought in Quercus ilex and Phillyrea latifolia,” Biologia Plantarum, Vol. 50, No. 3, 2006, pp. 373-382. doi:10.1007/s10535-006-0052-y
[38] IPCC, “Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,” Cambridge University Press, Cambridge, 2007.
[39] S. Richter, T. Kipfer, T. Wohlgemuth, C. Calderón Guerrero, J. Ghazoul and B. Moser, “Phenotypic Plasticity Facilitates Resistance to Climate Change in a Highly Variable Environment,” Oecologia, Vol. 169, No. 1, 2012, pp. 269-279. doi:10.1007/s00442-011-2191-x
[40] A. B. Moyes, C. Castanha, M. J. Germino and L. M. Kueppers, “Warming and the Dependence of Limber Pine (Pinus flexilis) Establishment on Summer Soil Moisture within and above Its Current Elevation Range,” Oecologia, Vol. 171, No. 1, 2013, pp. 271-282. doi:10.1007/s00442-012-2410-0
[41] R. Ogaya and J. Peñuelas, “Contrasting Foliar Responses to Drought in Quercus ilex and Phillyrea latifolia,” Biorlogia Plantarum, Vol. 50, No. 3, 2006, pp. 373-382. doi:10.1007/s10535-006-0052-y
[42] K. Kikuzawa, “The Basis for Variation in Leaf Longevity of Plants,” Vegetatio, Vol. 121, No. 1-2, 1995, pp. 89-100. doi:10.1007/BF00044675
[43] L. Gratani and M. F. Crescente, “Phenology and Leaf Adaptive Strategies of Mediterranean Maquis Plants,” Ecologia Mediterranea, Vol. 23, No. 3-4, 1997, pp. 11-19.
[44] M. Fenner, “The Phenology of Growth and Reproduction in Plants,” Perspectives in Plant Ecology Evolution and Systematics, Vol. 1, No. 1, 1998, pp. 78-91. doi:10.1078/1433-8319-00053
[45] C. Parmesan, “Influences of Species, Latitudes and Methodologies on Estimates of Phenological Response to Global Warming,” Global Change Biology, Vol. 13, No. 9, 2007, pp. 1860-1872. doi:10.1111/j.1365-2486.2007.01404.x
[46] J. E. Nedlo, T. A. Martin and J. M. Vose, “Growing Season Temperatures Limit Growth of Loblolly Pine (Pinus taeda L.) Seedlings across a Wide Geographic Transect,” Trees-Structure and Function, Vol. 23, No. 4, 2009, pp. 751-759. doi:10.1007/s00468-009-0317-0
[47] S. Mediavilla and A. Escudero, “Relative Growth Rate of Leaf Biomass and Leaf Nitrogen Content in Several Mediterranean Woody Species,” Plant Ecology, Vol. 168, No. 2, 2003, pp. 321-332. doi:10.1023/A:1024496717918
[48] B. Shipley, “Trade-Offs between Net Assimilation Rate and Specific Leaf Area in Determining Relative Growth Rate: Relationship with Daily Irradiance,” Functional Ecology, Vol. 16, No. 5, 2002, pp. 682-689. doi:10.1046/j.1365-2435.2002.00672.x
[49] P. Dijkstra and H. Lambers, “Photosynthesis and Respiration of Two Inbred Lines of Plantago Major L. Differing in Relative Growth Rate,” In: R. Marcelle, H. Clijsters and M. Van Poucke, Eds., Biological Control of Photosynthesis, Martinus Nijhoff Publishers, The Hague, 1986, pp. 251-255. doi:10.1007/978-94-009-4384-1_23
[50] E. Roetman and A. A. Sterk, “Growth of Micro Species of Different Sections of Taraxacum in Climatic Chambers,” Acta Botanica Neerlandica, Vol. 35, No. 1, 1986, pp. 5-22.
[51] H. Poorter and C. Remkes, “Leaf Area Ratio and Net Assimilation Rate of 24 Wild Species Differing in Relative Growth Rate,” Oecologia, Vol. 83, No. 4, 1990, pp. 553-559.
[52] J. P. Grime, K. Thompson, R. Hunt, J. G. Hodgson, J. H. C. Cornelissen, I. H. Rorison, G. A. F. Hendry, T. W. Ashenden, A. P. Askew, S. R. Band, R. E. Booth, C. C. Bossard, B. D. Campbell, J. E. L. Cooper, A. W. Davison, P. L. Gupta, W. Hall, D. W. Hand, M. A. Hannah, S. H. Hillier, D. J. Hodkinson, A. Jalili, Z. Liu, J. M. L. Mackey, N. Matthews, M. A. Mowforth, A. M. Neal, R. J. Reader, K. Reiling, W. Ross-Fraser, R. E. Spencer, F. Sutton, D. E. Tasker, P. C. Thorpe and J. Whitehouse, “Integrated Screening Validates Primary Axes of Specialisation in Plants,” Oikos, Vol. 79, No. 2, 1997, pp. 259-281. doi:10.2307/3546011
[53] F. Vendramini, S. Díaz, D. E. Gurvich, P. J. Wilson, K. Thompson and J. G. Hodgson, “Leaf Traits as Indicators of Resource-Use Strategy in Floras with Succulent Species,” New Phytologist, Vol. 154, 2002, No. 1, pp. 147-157.
[54] ü. Niinemets, “Components of Leaf Dry Mass per Area— Thickness and Density—Alter Leaf Photosynthetic Capacity in Reverse Directions in Woody Plants,” New Phytologist, Vol. 144, No. 1, 1999, pp. 35-47. doi:10.1046/j.1469-8137.1999.00466.x
[55] J. R. Ehleringer, “Ecology and Ecophysiology of Leaf Pubescence in North American Plants,” In: E. Rodriguez, P. L. Healey and I. Mehta, Eds., Biology and Chemistry of Plant Trichomes, Plenum, New York, 1984, pp. 113-132.
[56] G. Karabourniotis and J. F. Bornman, “Penetration of UV-A and UV-B and Blue Light through the Leaf Trichome Layers of Two Xeromorphic Plants, Olive and Oak, Measured by Optical Fibre Probes,” Physiologia Plantarum, Vol. 105, No. 4, 1999, pp. 655-661. doi:10.1034/j.1399-3054.1999.105409.x
[57] K. Hikosaka, “Interspecific Difference in the Photosynthesis-Nitrogen Relationship: Patterns, Physiological Causes, and Ecological Importance,” Journal of Plant Research, Vol. 117, No. 6, 2004, pp. 481-494. doi:10.1007/s10265-004-0174-2
[58] C. R. Warren and M. A. Adams, “What Determines Rates of Photosynthesis per Unit Nitrogen in Eucalyptus Seedlings?” Functional Plant Biology, Vol. 31, No. 12, 2004, pp. 1169-1178. doi:10.1071/FP04115
[59] B. R. Maricle and P. B. Adler, “Effects of Precipitation on Photosynthesis and Water Potential in Andropogon gerardii and Schizachyrium scoparium in a Southern Mixed Grass Prairie,” Environmental and Experimental Botany, Vol. 72, No. 2, 2011, pp. 223-231. doi:10.1016/j.envexpbot.2011.03.011
[60] D. W. Lawlor, “Limitation to Photosynthesis in Water-Stressed Leaves: Stomata vs. Metabolism and the Role of ATP,” Annals of Botany, Vol. 89, No. 7, 2002, pp. 871-885. doi:10.1093/aob/mcf110
[61] O. Ghannoum, “C4 Photosynthesis and Water Stress,” Annals of Botany, Vol. 103, No. 4, 2009, pp. 635-644. doi:10.1093/aob/mcn093
[62] M. C. Hall and J. H. Willis, “Divergent Selection on Flowering Time Contributes to Local Adaptation in Mimulus guttatus Populations,” Evolution, Vol. 60, No. 12, 2006, pp. 2466-2477.
[63] D. B. Lowry, R. C. Rockwood and J. H. Willis, “Ecological Reproductive Isolation of Coast and Inland Races of Mimulus guttatus,” Evolution, Vol. 62, No. 9, 2008, pp. 2196-2214. doi:10.1111/j.1558-5646.2008.00457.x
[64] C. A. Wu, D. B. Lowry, L. I. Nutter and J. H. Willis, “Natural Variation for Drought-Response Traits in the Mimulus guttatus Species Complex,” Oecologia, Vol. 162, No. 1, 2010, pp. 23-33. doi:10.1007/s00442-009-1448-0
[65] S. A. Dudley, “Differing Selection on Plant Physiological Traits in Response to Environmental Water Availability: A Test of Adaptive Hypotheses,” Evolution, Vol. 50, No. 1, 1996, pp. 92-102. doi:10.2307/2410783
[66] M. S. Heschel, S. E. Sultan, S. Glover and D. Sloan, “Population Differentiation and Plastic Responses to Drought Stress in the Generalist Annual Impatiens capensis,” Oecologia, Vol. 139, No. 4, 2004, pp. 487-494.
[67] F. Ludwig, D. M. Rosenthal, J. A. Johnston, N. C. Kane, B. L. Gross, C. Lexer, L. H. Rieseberg and L. A. Donovan, “Selection on Leaf Ecophysiological Traits in a Desert Hybrid Helianthus Species and Early-Generation Hybrids,” Evolution, Vol. 58, No. 12, 2004, pp. 2682-2692.
[68] M. S. Heschel and C. Riginos, “Mechanisms of Selection for Drought Stress Tolerance and Avoidance in Impatiens capensis,” American Journal of Botany, Vol. 92, No. 1, 2005, pp. 37-44. doi:10.3732/ajb.92.1.37

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.