Share This Article:

Lab Source Anomalous Scattering Using Cr Kα Radiation

Abstract Full-Text HTML Download Download as PDF (Size:463KB) PP. 57-64
DOI: 10.4236/csta.2013.22008    2,898 Downloads   5,557 Views  

ABSTRACT

High-throughput crystallography requires a method by which the structures of proteins can be determined quickly and easily. Experimental phasing is an essential technique in determining the three-dimensional protein structures using single-crystal X-ray diffraction. In macromolecular crystallography, the phases are derived either by Molecular Replacement (MR) method using the atomic coordinates of a structurally similar protein or by locating the positions of heavy atoms that are intrinsic to the protein or that have been added (MIR, MIRAS, SIR, SIRAS, MAD and SAD). Availability of in-house lab data collection sources (Cu and Cr radiation), cryo-crystallography and improved software for heavy atom location and density modification have increased the ability to solve protein structures using SAD. SAD phasing using intrinsic anomalous scatterers like sulfur, chlorine, calcium, manganese and zinc, which are already present in the protein becomes increasingly attractive owing to the advanced phasing methods. An analysis of successful SAD phasing on three proteins, lysozyme, glucose isomerase and thermolysin based on the signal of weak anomalous scatterers such as sulfur atom and chloride ion have been carried out. This analysis also proves that even the anomalous signal provided or present naturally in a macromolecule is good enough to solve crystal structures successfully using lab source chromium-generated X-ray radiation.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Narayanan and D. Velmurugan, "Lab Source Anomalous Scattering Using Cr Kα Radiation," Crystal Structure Theory and Applications, Vol. 2 No. 2, 2013, pp. 57-64. doi: 10.4236/csta.2013.22008.

References

[1] U. Heinmann, G. Illing and H. Oschkinat, “HighThrougput Three-Dimensional Protein Structure Determination,” Current Opinion in Biotechnology, Vol. 12, No. 4, 2001, pp. 348-354. doi:10.1016/S0958-1669(00)00226-3
[2] P. Kuhn, K. Wilson, M. G. Patch and R. C. Stevens, “The Genesis of High-Throughput Structure-Based Drug Discovery Using Protein Crystallography,” Current Opinion in Chemical Biology, Vol. 6, No. 5, 2002, pp. 704-710 doi:10.1016%2FS1367-5931%2802%2900361-7
[3] T. L. Blundell, H. Jhoti and C. Abell, “High-Throughput Crystallography for Lead Discovery in Drug Design,” Nature Reviews Drug Discovery, Vol. 1, No. 1, 2002, pp. 45-54. doi:10.1038%2Fnrd706
[4] J. S. Brunzelle, P. Shafaee, X. Yang, S. Weigand, Z. Ren and W. F. Anderson, “Automated Crystallographic System for High-Throughput Protein Structure Determination,” Acta Crystallographica, Vol. D59, No. 7, 2003, pp. 1138-1144. doi:10.1107%2FS0907444903008199
[5] B. Rupp, “High-Throughput Crystallography at an Affordable Cost:? The TB Structural Genomics Consortium Crystallization Facility,” Accounts of Chemical Research, Vol. 36, No. 3, 2003, pp. 173-181. doi:10.1021%2Far020021t
[6] T. L. Blundell and S. Patel, “High-Throughput X-Ray Crystallography for Drug Discovery,” Current Opinion in Pharmacology, Vol. 4, No. 5, 2004, pp. 490-496. doi:10.1016%2Fj.coph.2004.04.007
[7] N. S. Ganapathy and P. K. Andrew, “In-House Sulfur SAD Phasing: A Case Study of the Effects of Data Quality and Resolution Cutoffs,” Acta Crystallographica, Vol. D62, No. 7, 2006, pp. 707-716. doi:10.1107/S0907444906014946
[8] B.-C. Wang, “Resolution of Phase Ambiguity in Macromolecular Crystallography,” Methods in Enzymology, Vol. 115, 1985, pp. 90-111. doi:10.1016/0076-6879(85)15009-3
[9] E. J. Dodson, G. G. Dodson, A. Lewitoya and M. Sabesan, “Zinc-Free Cubic Pig Insulin: Crystallization and Structure Determination,” Journal of Molecular Biology, Vol. 125, No. 3, 1978, pp. 387-396. doi:10.1016%2F0022-2836%2878%2990409-6
[10] W. A. Hendrickson and M. M. Teeter, “Structure of the Hydrophobic Protein Crambin Determined Directly from the Anomalous Scattering of Sulphur,” Nature, Vol. 290, No. 5802, 1981, pp. 107-113. doi:10.1038/290107a0
[11] L. M. Rice, T. N. Earnest and A. T. Brunger, “SingleWavelength Anomalous Diffraction Phasing Revisited,” Acta Crystallographica, Vol. D56, No. 11, 2000, pp. 1413-1420. doi:10.1107%2FS0907444900010039
[12] A. Goulet, G. Vestergaard, F. C. Rodrigues, V. Campanacci, R. A. Garrett, C. Cambillau and L. M. Ortiz, “Getting the Best out of Long-Wavelength X-Rays: De Novo Chlorine/Sulfur SAD Phasing of a Structural Protein from ATV,” Acta Crystallographica, Vol. D66, No. 3, 2010, pp. 304-308. doi:10.1107%2FS0907444909051798
[13] J. Doutch, M. A. Hough, S. S. Hasnain and R. W. Strange, “Challenges of Sulfur SAD Phasing as a Routine Method in Macromolecular Crystallography,” Journal of Synchrotron Radiation, Vol. 19, No. 1, 2012, pp. 19-29. doi:10.1107%2FS0909049511049004
[14] R. Fourme, W. Shepard and R. Kahn, “Application of the Anomalous Dispersion of X-Rays to Macromolecular Crystallography,” Progress in Biophysics and Molecular Biology, Vol. 64, No. 2, 1995, pp. 167-199. doi:10.1016/S0079-6107(96)00002-8
[15] E. D. Judit, B. Gabor, Ma. Qingjun, B. Heiko and G. M. Sheldrick, “In-House Measurement of the Sulfur Anomalous Signal and Its Use for Phasing,” Acta Crystallographica, Vol. D59, No. 4, 2003, pp. 688-696. doi:10.1107/S0907444903002646
[16] C. Yang and J. W. Pflugrath, “Applications of Anomalous Scattering from S Atoms for Improved Phasing of Protein Diffraction Data Collected at Cu Kα Wavelength,” Acta Crystallographica, Vol. D57, No. 10, 2001, pp. 1480-1490. doi:10.1107%2FS0907444901013397
[17] C. T. Lemke, G. D. Smith and P. L. Howell, “S-SAD, Se-SAD and S/Se-SIRAS Using Cu Kα Radiation: Why Wait for Synchrotron Time?” Acta Crystallographica, Vol. D58, Vol. 12, 2002, pp. 2096-2101. doi:10.1107%2FS0907444902018838
[18] J. E. Debreczeni, G. Bunkóczi, B. Girmann and G. M. Sheldrick, “In-House Phase Determination of the LimaBean Trypsin Inhibitor: A Low-Resolution Sulfur-SAD Case,” Acta Crystallographica, Vol. D59, No. 2, 2003, pp. 393-395. doi:10.1107/S0907444902020917
[19] J. G. Olsen, C. Flensberg, O. Olsen, G. Bricogne and A. Henriksen, “Solving the Structure of the Bubble Protein Using the Anomalous Sulfur Signal from Single-Crystal In-House Cu Kα Diffraction Data Only,” Acta Crystallographica, Vol. D60, No. 2, 2004, pp. 250-255. doi:10.1107%2FS0907444903025927
[20] M. S. Weiss, P. A. Tucker, S. Panjikar, K. D. Carugo, M. Polentarutti and C. Muller-Dieckmann, “On the Routine Use of Soft X-Rays in Macromolecular Crystallography. Part II. Data-Collection Wavelength and Scaling Models,” Acta Crystallographica, Vol. D60, 2004, pp. 28-38. doi:10.1107/S0907444903020833
[21] O. Carugo and K. Djinovic Carugo, “When X-Rays Modify the Protein Structure: Radiation Damage at Work,” Trends Biochemical Sciences, Vol. 30, No. 4, 2005, pp. 213-219. doi:10.1016%2Fj.tibs.2005.02.009
[22] C. Yang, J. W. Pflugarth, D. A. Courville, C. N. Stence and J. D. Ferrara, “Away from the Edge: SAD Phasing from the Sulfur Anomalous Signal Measured In-House with Chromium Radiation,” Acta Crystallographica, Vol. D59, No. 11, 2003, pp. 1943-1957. doi:10.1107/S0907444903018547
[23] J. H. Naismith, et al., “Refined Structure of CadmiumSubstituted Concanavalin A at 2.0 ? Resolution,” Acta Crystallographica, Vol. D49, No. 6, 1993, pp. 561-571. doi:10.1107/S0907444993006390
[24] J. Brown, R. M. Esnouf, M. A. Jones, J. Linnell, K. Harlos, A. B. Hassan and E. Y. Jones, “Structure of a Functional IGF2R Fragment Determined from the Anomalous Scattering of Sulfur,” The EMBO Journal, Vol. 21, No. 5, 2002, pp. 1054-1062. doi:10.1093/emboj/21.5.1054
[25] E. J. Gordon, G. A. Leonard, S. McSweeney and P. F. Zagalsky, “The C1 Subunit of Alpha-Crustacyanin: The de Novo Phasing of the Crystal Structure of a 40 kDa Homodimeric Protein Using the Anomalous Scattering from S Atoms Combined with Direct Methods,” Acta Crystallographica, Vol. D57, No. 9, 2001, pp. 1230-1237. doi:10.1107/S0907444901009362
[26] Z. J. Liu, E. S. Vysotski, C. J. Chen, J. P. Rose, J. Lee and B. C. Wang, “Structure of the Ca2+ Regulated Photoprotein Obelin at 1.7 ? Resolution Determined Directly from Its Sulfur Substructure,” Protein Science, Vol. 9, No. 11, 2000, pp. 2085-2093. doi:10.1110/ps.9.11.2085
[27] U. A. Ramgopal, M. Dauter and Z. Dauter, “SAD Manganese in Two Crystal Forms of Glucose Isomerase,” Acta Crystallographica, Vol. D59, No. 5, 2003, pp. 868875. doi:10.1107/S0907444903005663
[28] M. S. Weiss, T. Sicker and R. Hilgenfield, “Soft X-Rays, High Redundancy, and Proper Scaling: A New Procedure for Automated Protein Structure Determination via SAS,” Structure, Vol. 9, No. 9, 2001, pp. 771-777. doi:10.1016/S0969-2126(01)00647-5
[29] Y. Kitago, N. Watanabe and I. Tanaka, “Structure Determination of a Novel Protein by Sulfur SAD Using Chromium Radiation in Combination with a New CrystalMounting Method,” Acta Crystallographica, Vol. D61, No. 8, 2005, pp. 1013-1021. doi:10.1107/S0907444905012734
[30] N. Watanabe, Y. Kitago, I. Tanaka, J-W. Wang, Y.-X. Gu, C.-D. Zheng and H.-F. Fan, “Comparison of Phasing Methods for Sulfur-SAD Using In-House Chromium Radiation: Case Studies for Standard Proteins and a 69 kDa Protein,” Acta Crystallographica, D61, No. 11, 2005, pp. 1533-1540. doi:10.1107/S0907444905028416
[31] Z. Dauter, M. Dauter, E. de La Fortelle, G. Bricogne and G. M. Sheldrick, “Can Anomalous Signal of Sulfur Become a Tool for Solving Protein Crystal Structures?” Journal of Molecular Biology, Vol. 289, No. 1, 1999, pp. 83-92. doi:10.1006/jmbi.1999.2743
[32] K. Sekar, V. Rajakannan, D. Velmurugan, T. Tamane, R. Thirumurugan, M. Dauter and Z. Dauter, “A Redetermination of the Structure of the Triple Mutant (K53, 56, 120M) of Phospholipase A2 at 1.6 ? Resolution Using Sulfur-SAS at 1.54 ? Wavelength,” Acta Crystallographica, Vol. D60, No. 9, 2004, pp. 1586-1590. doi:10.1107/S090744490401697X
[33] D. Roeser, A. Dickmanns, K. Gasow and M. G. Rudolph, “De Novo Calcium/Sulfur SAD Phasing of the Human Formylglycine-Generating Enzyme Using In-House Data,” Acta Crystallographica, Vol. D61, No. 8, 2005, pp. 1057-1066. doi:10.1107/S0907444905013831
[34] C. T. Lemke, G. D. Smith and P. L. Howell, “S-SAD, Se-SAD and S/Se-SIRAR Using Cu Kalpha Radiation: Why Wait for Synchrotron Time?” Acta Crystallographica, Vol. D58, No. 12, 2002, pp. 2096-2101. doi:10.1107/S0907444902018838
[35] G. N. Sarma and P. A. Karplus, “In-House Sulfur SAD Phasing: A Case Study of the Effects of Data Quality and Resolution Cutoffs,” Acta Crystallographica, Vol. D62, No. 7, 2006, pp. 707-716. doi:10.1107/S0907444906014946
[36] J. Nan, Y. Zhou, C. Yang, E. Brostromer, O. Kristensen and X.-D. Su, “Structure of a Fatty-Acid-Binding Protein from Bacillus Subtilis Determined by Sulfur-SAD Phasing Using In-House Chromium Radiation,” Acta Crystallograhica, Vol. D65, No. 5, 2009, pp. 440-448.
[37] M. Yogavel, et al., “Structural Analysis of Actinidin and a Comparison of Cadmium and Sulfur Anomalous Signals from Actinidin Crystals Measured Using In-House Copperand Chromium-Anode X-Ray Sources,” Acta Crystallographica, Vol. D66, No. 12, 2010, pp. 13231333. doi:10.1107/S0907444910040394
[38] I. Uson, et al., “Locating the Anomalous Scatterer Substructures in Halide and Sulfur Phasing,” Acta Crystallographica, Vol. D59, No. 1, 2003, pp. 57-66. doi:10.1107/S090744490201884X
[39] P. McCaldon and P. Argos, “Oligopeptide Biases in Protein Sequences and Their Use in Predicting Protein Coding Regions in Nucleotide Sequences,” Proteins, Vol. 4, No. 2, 1988, pp. 99-122. doi:10.1002%2Fprot.340040204
[40] Z. Dauter and M. Dauter, “Anomalous Signal of Solvent Bromides Used for Phasing of Lysozyme,” Journal of Molecular Biology, Vol. 289, No. 1, 1999, pp. 93-101. doi:10.1006%2Fjmbi.1999.2744
[41] Z. Dauter, M. Dauter and K. R. Rajashankar, “Novel Approach to Phasing Proteins: Derivatization by Short Cryo-Soaking with Halides,”Acta Crystallographica, Vol. D56, No. 2, 2000, pp. 232-237. doi:10.1107/S0907444999016352
[42] Z. Dauter and M. Dauter, “Entering a New Phase: Using Solvent Halide Ions in Protein Structure Determination,” Structure, Vol. 9, No. 2, 2001, pp. R21-R26. doi:10.1016/S0969-2126(01)00565-2
[43] S. Korolev, et al., “Using Surface-Bound Rubidium Ions for Protein Phasing,” Acta Crystallographica, Vol. D57, No. 7, 2001, pp. 1008-1012. doi:10.1107%2FS0907444901007302
[44] R. A. P. Nagem, Z. Dauter and I. Polikarpov, “Protein Crystal Structure Solution by Fast Incorporation of Negatively and Positively Charged Anomalous Scatterers,” Acta Crystallographica, Vol. D57, No. 7, 2001, pp. 996-1002. doi:10.1107%2FS0907444901007260
[45] T. C. Appleby, et al.,“Structure of Human UridineCytidine Kinase 2 Determined by SIRAS Using a Rotating-Anode X-Ray Generator and a Single Samarium Derivative,” Acta Crystallographica, Vol. D61, No. 3, 2005, pp. 278-284. doi:10.1107%2FS0907444904032937
[46] J. Jakoncic, et al.,“Anomalous Diffraction at Ultra-High Energy for Protein Crystallography,” Journal of Applied Crystallography, Vol. 39, No. 6, 2006, pp. 831-841. doi:10.1107%2FS0021889806036387
[47] G. Guncar, et al., “The Use of Co2+ for Crystallization and Structure Determination, Using a Conventional Monochromatic X-Ray Source, of Flax Rust Avirulence Protein,” Acta Crystallographica, Vol. F63, No. 3, 2007, pp. 209-213. doi:10.1107/S1744309107004599
[48] M. Yogavel,,, et al., “Structural Analysis of Actinidin and a Comparison of Cadmium and Sulfur Anomalous Signals from Actinidin Crystals Measured Using In-House Copperand Chromium-Anode X-Ray Sources,” Acta Crystallographica, Vol. D66, No. 12, 2010, pp. 13231333. doi:10.1107/S0907444910040394
[49] J. E. Debreczeni, G. Bunkoczi, Q. Ma, H. Blaser and G. M. Sheldrick, “In-House Measurement of the Sulfur Anomalous Signal and Its Use for Phasing,” Acta Crystallographica, Vol. D59, No. 4, 2003, pp. 688-696. doi:10.1107/S0907444903002646
[50] K. N. Vennila and D. Velmurugan, “In-House SAD Phasing with Surface-Bound Cerium Ions,” Acta Crystallographica, Vol. F67, No. 12, 2011, pp. 1662-1665. doi:10.1107/S1744309111035718
[51] V. Dhanasekaran and D. Velmurugan, “SAD Phasing with In-House Cu Kα Radiation Using Barium as Anomalous Scatterer,” Indian Journal of Biochemistry and Biophysics, Vol. 48, No. 6, 2011, pp. 399-405.
[52] Z. Dauter, M. Dauter, E. de La Fortelle, G. Bricogne and G. M. Sheldrick, “Can Anomalous Signal of Sulfur Become a Tool for Solving Protein Structures?” Journal of Molecular Biology, Vol. 28, No. 1, 1999, pp. 83-92. doi:10.1006%2Fjmbi.1999.2743
[53] H. L. Carrell, H. Hoier and J. P. Glusker, “Modes of Binding Substrates and Their Analogues to the Enzyme D-Xylose Isomerase,” Acta Crystallographica, Vol. D50, No. 113, 1994, pp. 113-123. doi:10.1107%2FS0907444993009345
[54] C. Mueller-Dieckmann, et al., “On the Routine Use of Soft X-Rays in Macromolecular Crystallography. Part IV. Efficient Determination of Anomalous Substructures in Biomacromolecules Using Longer X-Ray Wavelengths,” Acta Crystallographica, Vol. D63, 2007, pp. 366-380. doi:10.1107%2FS0907444906055624
[55] Rigaku Americas, “New Trails Drive,” The Woodlands, Texas, pp. 77381-5209.
[56] Z. Otwinowski and W. Minor, “Processing of X-Ray Diffraction Data Collected in Oscillation Mode,” In: C. W. Carter Jr. and R. M. Sweet, Eds., Methods in Enzymology, Macromolecular Crystallography, Part A, New York, 1997, pp. 307-326.
[57] G. M. Sheldrick, H. A. Hauptman, C. M. Weeks, M. Miller and I. Uson, “Ab Initio Phasing,” In: E. Arnold and M. Rossman, Eds., International Tables for Crystallography, Vol. F, IUCr and Kluwer Academic Publishers, Dordrecht, 2001, pp. 333-351.
[58] I. Uson and G. M. Sheldrick, “Advances in Direct Methods for Protein Crystallography,” Current Opinion in Structure Biology, Vol. 9, No. 5, 1999, pp. 643-648. doi:10.1016/S0959-440X(99)00020-2
[59] G. G. Langer, S. X. Cohen, A. Perrakis and V. S. Lamzin, “Automated Macromolecular Model Building for X-Ray Crystallography Using ARP/wARP Version 7,” Nature Protocols, Vol. 3, No. 7, 2008, pp. 1171-1179. doi:10.1038/nprot.2008.91
[60] P. Emsley and K. Cowtan, “Coot: Model-Building Tools for Molecular Graphics,” Acta Crystallographica, Vol. D60, No. 12, 2004, pp. 2126-2132. doi:10.1107%2FS0907444904019158
[61] A. A. Vagin, et al., “REFMAC5 Dictionary: Organization of Prior Chemical Knowledge and Guidelines for Its Use,” Acta Crystallographica, Vol. D60, No. 12, 2004, pp. 2284-2295. doi:10.1107%2FS0907444904023510
[62] CCP4 (Collaborative Computational Project, Number 4), “The CCP4 Suite: Programs for Protein Crystallography,” Acta Crystallographica, Vol. D50, No. 5, 1994, pp. 760763. doi:10.1107/S0907444994003112
[63] W. L. DeLano, “The PyMOL Molecular Graphics System,” DeLano Scientific, San Carlos, 1998.
[64] T. Pape and T. R. Schneider, “HKL2MAP: A Graphical User Interface for Macromolecular Phasing with SHELX Programs,” Journal of Applied Crystallography, Vol. 37, No. 5, 2004, pp. 843-844. doi:10.1107%2FS0021889804018047
[65] T. C. Don, “Calculation of Anomalous Scattering Factors at Arbitrary Wavelengths,” Journal of Applied Crystallography, Vol. 16, No. 4, 1983, pp. 437. doi:10.1107/S0021889883010791

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.