Share This Article:

Growth Optimization, Strain Compensation and Structure Design of InAs/GaSb Type-II Superlattices for Mid-Infrared Imaging

Abstract Full-Text HTML Download Download as PDF (Size:1701KB) PP. 46-56
DOI: 10.4236/csta.2013.22007    3,482 Downloads   6,910 Views   Citations

ABSTRACT

InAs/GaSb type-II superlattce (T2SL) photodetector structures at the MWIR regime were grown by molecular beam epitaxy. The growth temperature and group-V soaking times were optimized with respect to interface and transport quality. Novel strain compensation schemes with insertion of InSb layers were proposed and tested to be efficient to tune the overall strain between tensile and compressive without degradation of interface and optical quality. The effect of the proposed methods is modeled by analytic functions.  Band structure calculations were also carried out for the proposed T2SL structures to assist optimizing sample designs. Single pixel photodiodes with a low dark current were demonstrated.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Y. Song, S. Wang, C. Asplund, R. Würtemberg, H. Malm, A. Karim, X. Lu and J. Shao, "Growth Optimization, Strain Compensation and Structure Design of InAs/GaSb Type-II Superlattices for Mid-Infrared Imaging," Crystal Structure Theory and Applications, Vol. 2 No. 2, 2013, pp. 46-56. doi: 10.4236/csta.2013.22007.

References

[1] G. Hasnain, B. Levine, D. Sivco, A. Cho, “Mid-Infrared Detectors in the 3 5 μm Band Using Bound to Continuum State Absorption in InGaAs/InAlAs Multiquantum Well Structures,” Applied Physics Letters, Vol. 56, No. 8, 1990, pp. 770-772. doi:10.1063/1.103186
[2] A. Rogalski, “Recent Progress in Infrared Detector Technologies,” Infrared Physics & Technology, Vol. 54, 2011, pp. 136-154. doi:10.1016/j.infrared.2010.12.003
[3] M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, R. P. Leavitt, S. W. Kennerly, D. W. Beekman, A. C. Goldberg and W. R. Dyer, “Device Physics and Focal Plane Array Applications of QWIP and MCT,” Opto-Electronics Review, Vol. 7, No. 4, 1999, pp. 283-296.
[4] M. Walther, R. Rehm, J. Schmitz, J. Fleissner, F. Rutz, L. Kirste, R. Scheibner, J. Wendler and J. Ziegler,”Quantum Sensing and Nanophotonic Devices VII,” SPIE, San Francisco, 2010.
[5] G. Sai-Halasz, R. Tsu and L. Esaki, “A New Semiconductor Superlattice,” Applied Physics Letters, Vol. 30, No. 12, 1977, p. 651. doi:10.1063/1.89273
[6] D. Smith and C. Mailhiot, “Proposal for Strained Jour II Superlattice Infrared Detectors,” Journal of Applied Physics, Vol. 62, No. 6, 1987, p. 2545. doi:10.1063/1.339468
[7] G. A. Sai-Halasz, L. Esaki and W. A. Harrison, “InAsGaSb Superlattice Energy Structure and Its Semiconductor-Semimetal Transition,” Physical Review B, Vol. 18, No. 6, 1978, pp. 2812-2818. doi:10.1103/PhysRevB.18.2812
[8] Y. Wei, A. Gin, M. Razeghi and G. Brown, “Type II InAs/GaSb Superlattice Photovoltaic Detectors with Cutoff Wavelength Approaching 32 μm,” Applied Physics Letters, Vol. 81, No. 19, 2002, p. 3675. doi:10.1063/1.1520699
[9] R. Rehm, M. Walther, J. Schmitz, J. Fleissner, J. Ziegler, W. Cabanski and R. Breiter, “Dual-Colour Thermal Imaging with InAs/GaSb Superlattices in Mid-Wavelength Infrared Spectral Range,” Electronics Letters, Vol. 42, No. 10, 2006, pp. 577-578. doi:10.1049/el:20060878
[10] A. Khoshakhlagh, E. Plis, S. Myers, Y. D. Sharma, L. R. Dawson, S. Krishna, “Optimization of InAs/GaSb Type-II Superlattice Interfaces for Long-Wave (~8 μm) Infrared Detection” Journal of Crystal Growth, Vol. 311, No. 7, 2009, pp. 1901-1904. doi:10.1016/j.jcrysgro.2008.11.027
[11] A. Rogalski, J. Antoszewski, L. Faraone, “Third-Generation Infrared Photodetector Arrays,” Journal of Applied Physics, Vol. 105, 2009, Article ID: 91101. doi:10.1063/1.3099572
[12] M. Walther, J. Schmitz, R. Rehm, S. Kopta, F. Fuchs, J. Fleissner, W. Cabanski and J. Ziegler, “Growth of InAs/ GaSb Short-Period Superlattices for High-Resolution Mid-Wavelength Infrared Focal Plane Array Detectors,” Journal of Crystal Growth, Vol. 278, 2005, pp. 156-161. doi:10.1016/j.jcrysgro.2004.12.044
[13] M. Walther, R. Rehm, F. Fuchs, J. Schmitz, J. FleiBner, W. Cabanski, D. Eich, M. Finck, W. Rode, J. Wendler, R. Wollrab and J. Ziegler, “256 × 256 Focal Plane Array Midwavelength Infrared Camera Based on InAs/GaSb Short-Period Superlattices,” Journal of Electronic Materials, Vol. 34, No. 6, 2005, pp. 722-725. doi:10.1007/s11664-005-0010-z
[14] S. A. Pour, E. K. Huang, G. Chen, A. Haddadi, B. M. Nguyen and M. Razeghi, “High Operating Temperature Midwave Infrared Photodiodes and Focal Plane Arrays Based on Type-II InAs/GaSb Superlattices,” Applied Physics Letters, Vol. 98, No. 14, 2011, pp. 143501143503. doi:10.1063/1.3573867
[15] R. Rehm, M. Walther, F. Rutz, J. Schmitz, A. Worl, J. M. Masur, R. Scheibner, J. Wendler and J. Ziegler, “256 × 256 Focal Plane Array Midwavelength Infrared Camera Based on InAs/GaSb Short-Period Superlattices,” Journal of Electronic Materials, Vol. 40, No. 6, 2011, pp. 17381743. doi:10.1007/s11664-011-1674-1
[16] S. D. Gunapala, D. Z. Ting, C. J. Hill, J. Nguyen, A. Soibel, S. B. Rafol, S. A. Keo, J. M. Mumolo, M. C. Lee, J. K. Liu and B. Yang, “Demonstration of a 1024 × 1024 Pixel InAs-GaSb Superlattice Focal Plane Array,” IEEE Photonics Technology Letters, Vol. 22, No. 24, 2010, pp. 1856-1858. doi:10.1109/LPT.2010.2089677
[17] E. K. W. Huang, P. Y. Delaunay, B. M. Nguyen, S. A. Pour and M. Razeghi, “Photovoltaic MWIR Type-II Superlattice Focal Plane Array on GaAs Substrate,” IEEE Journal of Quantum Electronics, Vol. 46, No. 12, 2010, pp. 1704-1708. doi:10.1109/JQE.2010.2061218
[18] N. Herres, F. Fuchs, J. Schmitz, K. M. Pavlov, J. Wagner, J. D. Ralston, P. Koidl, C. Gadaleta and G. Scamarcio, “Effect of Interfacial Bonding on the Structural and Vibrational Properties of InAs/GaSb Superlattices,” Physical Review B, Vol. 53, No. 23, 1996, pp. 15688-15705.
[19] J. H. Li, D. W. Stokes, J. C Wickett, O. Caha, K. E. Bassler and S. C. Moss, “Effect of Strain on the Growth of InAs/GaSb Superlattices: An X-Ray Diffraction Study,” Journal of Applied Physics, Vol. 107, No. 12, 2010, Article ID: 123504. doi:10.1063/1.3429100
[20] E. Plis, S. Annamalai, K. T. Posani, S. Krishna, R. A. Rupani and S. Ghosh, “Midwave Infrared Type-II InAs/ GaSb Superlattice Detectors with Mixed Interfaces,” Journal of Applied Physics, Vol. 100, No. 1, 2006, Article ID: 14510. doi:10.1063/1.2214222
[21] J. B. Rodriguez, P. Christol, L. Cerutti, F. Chevrier and A. Joullié, “MBE Growth and Characterization of Type-II InAs/GaSb Superlattices for Mid-Infrared Detection,” Journal of Crystal Growth, Vol. 274, No. 1-2, 2005, pp. 6-13. doi:10.1016/j.jcrysgro.2004.09.088
[22] H. J. Haugan, L. Grazulis, G. J. Brown, K. Mahalingam, D. H. Tomich, “Exploring Optimum Growth for High Quality InAs/GaSb Type-II Superlattices,” Journal of Crystal Growth, Vol. 261, No. 4, 2004, pp. 471-478. doi:10.1016/j.jcrysgro.2003.09.045
[23] E. Plis, A. Khoshakhlagh, S. Myers, H. S. Kim, N. Gautam, Y. D. Sharma, S. Krishna, S. J. Lee and S. K. Noh, “Molecular Beam Epitaxy Growth and Characterization of Type-II InAs/GaSb Strained Layer Superlattices for Long-Wave Infrared Detection,” Journal of Vacuum Science & Technology B, Vol. 28, No. 3, 2010, pp. C3-C13.
[24] Y. Wei, J. Bae, A. Gin, A. Hood, M. Razeghi, G. Brown and M. Tidrow, “High Quality Type II InAs/GaSb Superlattices with Cutoff Wavelength ~3.7 μm Using Interface Engineering,” Journal of Applied Physics, Vol. 94, No. 7, 2003, p. 4720. doi:10.1063/1.1606506
[25] B. Satpati, J. Rodriguez, A. Trampert, E. Tournie, A. Joullie and P. Christol, “Interface Analysis of InAs/GaSb Superlattice Grown by MBE,” Journal of Crystal Growth, Vol. 301-302, 2007, pp. 889-892. doi:10.1016/j.jcrysgro.2006.11.284
[26] E. Luna, B. Satpati, J. B. Rodriguez, A. N. Baranov, E. Tournie? and A. Trampert, “Interfacial Intermixing in InAs/GaSb Short-Period-Superlattices Grown by Molecular Beam Epitaxy,” Applied Physics Letters, Vol. 96, No. 2, 2010, Article ID: 021904.
[27] R. Kaspi, J. Steinshnider, M. Weimer, C. Moeller and A. Ongstad, “As-Soak Control of the InAs-on-GaSb Interface,” Journal of Crystal Growth, Vol. 225, No. 2-4, 2001, pp. 544-549. doi:10.1016/S0022-0248(01)00950-2
[28] D. Hoffman, B. Nguyen, P. Delaunay, A. Hood, M. Razeghi and J. Pellegrino, “Beryllium Compensation Doping of InAs/GaSb Infrared Superlattice Photodiodes,” Applied Physics Letters, Vol. 91, No. 14, 2007, Article ID: 143507. doi:10.1063/1.2795086
[29] L. Bürkle, F. Fuchs, J. Schmitz and W. Pletschen, “Control of the Residual Doping of InAs/(GaIn)Sb Infrared Superlattices,” Applied Physics Letters, Vol. 77, No. 11, 2000, p. 1659. doi:10.1063/1.1310167
[30] S. Bandara, P. Maloney, N. Baril, J. Pellegrino and M. Tidrow, “Doping Dependence of Minority Carrier Lifetime in Long-Wave Sb-Based Journal Article II Superlattice Infrared Detector Materials,” Optical Engineering, Vol. 6, No. 50, 2011, Article ID: 61015.
[31] M. Walther, R. Rehm, J. Schmitz, J. Niemasz, F. Rutz, A. Worl, L. Kirste, R. Scheibner, J. Wendler and J. Ziegler, “Defect Density Reduction in InAs/GaSb Journal Article II Superlattice Focal Plane Array Infrared Detectors,” Proceedings of SPIE, Vol. 7945, 2011, Article ID: 79451.
[32] B. M. Nguyen, G. Chen, M. A. Hoang and M. Razeghi, “Growth and Characterization of Long-Wavelength Infrared Type-II Superlattice Photodiodes on a 3-in GaSb Wafer,” IEEE Journal of Quantum Electron, Vol. 47, No. 5, 2011, pp. 686-690. doi:10.1109/JQE.2010.2103049
[33] S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson and D. L. Huffaker, “Strain Relief by Periodic Misfit Arrays for Low Defect Density GaSb on GaAs,” Applied Physics Letters, Vol. 88, No. 13, 2006, Article ID: 131911. doi:10.1063/1.2172742
[34] A. S. Bracker, M. J. Yang, B. R. Bennett, J. C. Culbertson and W. J. Moore, “Surface Reconstruction Phase Diagrams for InAs, AlSb, and GaSb,” Journal of Crystal Growth, Vol. 220, No. 4, 2000, pp. 384-392.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.