Share This Article:

Accumulation Characteristics of Some Elements in the Moss Polytrichum commune (Bryophytes) Based on XRF Spectrometry

Abstract Full-Text HTML Download Download as PDF (Size:767KB) PP. 522-528
DOI: 10.4236/jep.2013.46061    5,381 Downloads   7,985 Views   Citations

ABSTRACT

Bryophytes are broadly used as bioindicators. However, the internal distribution of accumulated elements in the moss tissue is little known. Sampling was carried out in The West Carpathians, Slovakia, in autumn 2012. Seven replicates have been used. The samples were analyzed by XRF Spectrometer Delta Classic. S, Pb, K, Ca, Cr, Mn, Fe, Cu, Rb, Sr, Mo, Ba and Zn were determined. For ordination analysis we used principal component analysis, statistical graphics system STATISTICA have been used for the correlation analysis and for analysis of variance. Results show that sulphur, zinc, chromium, manganese, molybdenum, kalcium and copper are preferentially accumulated in the capsula. While lead favors gametophyte, potassium and strontium prefer accumulation in sporophyte. Iron significantly accumulates in the more-year segments, while zinc in the stems. Copper, chromium and sulphur are accumulated preferentially in The Fatra Mts.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

R. Šoltés and E. Gregušková, "Accumulation Characteristics of Some Elements in the Moss Polytrichum commune (Bryophytes) Based on XRF Spectrometry," Journal of Environmental Protection, Vol. 4 No. 6, 2013, pp. 522-528. doi: 10.4236/jep.2013.46061.

References

[1] G. Tyler, “Bryophytes and Heavy Metals, a Literature Review,” Botanical Journal of the Linnean Society, Vol. 104, No. 1-3, 1990, pp. 231-253. doi:10.1111/j.1095-8339.1990.tb02220.x
[2] M. Sabovljevic, V. Vukojevic, N. Mihajlovic, G. Drazic and Z. Vucinic, “Determination of Heavy Metal Deposition in the County of Obrenovac (Serbia) Using Mosses as Bioindicators, I: Aluminum (Al), Arsenic (As), and Boron (B),” Archives of Biological Sciences, Vol. 57, No. 3, 2005, pp. 205-212. doi:10.2298/ABS0503205S
[3] R. Soltés, “Heavy Metal Concentrations in the Mosses of the Tatra Mountains (Czecho-Slovakia): Multivariate Analysis,” Oecologia Montana, Vol. 1, No. 1, 1992, pp. 31-36.
[4] R. Soltés, “Correlation between Altitude and Heavy Metal Deposition in the Tatra Mts (Slovakia),” Biologia, Vol. 53, No. 1, 1998, pp. 85-90.
[5] S. S. Sidhu, “Fluoride Levels in Air, Vegetation and Soil in the Vicinity of a Phosphorus Plant,” Journal of the Air Pollution Control Association, Vol. 29, No. 10, 1979, pp. 1069-1072. doi:10.1080/00022470.1979.10470899
[6] L. H. Wenstein and A. W. Davison, “Native Plant Species Suitable as Bioindicators and Biomonitors for Airborne Fluoride,” Environmental Pollution, Vol. 125, No. 1, 2003, pp. 3-11. doi:10.1016/S0269-7491(03)00090-3
[7] G. Busuoic, I. David, M. Sencovici and N. Iliescu, “Evaluation of Capacity for Bioaccumalation of Some Heavy Metals in Three Aquatic Plants Species,” In: P. Gastescu, W. Lewis Jr. and P. Bretcan, Eds., Proceedings of the Water Resources and Wetlands, Tulcea, 14-16 September 2012, pp. 220-223.
[8] V. Irudayaraj, M. Johnson, A. S. Priyakumari and P. A. Janani, “Effect of Heavy Metal Stress on Spore Germination of Pteris confusa T. G. Walker and Pteris argyraea T. Moore,” Journal of Stress Physiology & Biochemistry, Vol. 7, No. 4, 2011, pp. 1208-216.
[9] B. Markert and W. Wtorova, “Inorganic Chemical Investigations in the Forest Biosphere Reserve near Kalinin, USSR,” Vegetatio, Vol. 98, No. 1, 1992, pp. 43-58. doi:10.1007/BF00031636
[10] R. Soltés, A. Soltésová and Z. Kyselová, “Vplyv Imisií na Nelesnú Vegetáciu Vysokych a Belianskych Tatier,” Zborník prác o Tatranskom Národnom Parku, No. 32, 1992, pp. 307-333.
[11] B. Maňkovská, M. Florek, M. V. Frontasyeva, E. Ermakova, K. Oprea and S. S. Pavlov, “Atmospheric Deposition of Heavy Metals in Slovakia Studied by the Moss Biomonitoring Technique, Neutron Activation and Lame Atomic Absorption Spectrometry,” Ecologia, Vol. 22, No. 1, 2003, pp. 157-162.
[12] F. Xie and Z. H. Zhang, “Accumulation Characteristic of Heavy Metals between Gametophytes and Sporophytes of Moss Funaria hygrometrica,” Bulletin of Botanical Research, Vol. 31, No. 1, 2011, pp. 117-120.
[13] A. Basile, A. E. Cogoni, P. Bassi, E. Fabrizi, S. Sorbo, S. Giordano and R. C. Cobianchi, “Accumulation of Pb and Zn in Gametophytes and Sporophytes of the Moss Funaria hygrometrica (Funariales),” Annals of Botany, Vol. 87, No. 4, 2001, pp. 537-543.
[14] E. J. Bowen, “Water Conduction in Polytrichum commune,” Annals of Botany, Vol. 45, No 1, 1931, pp. 175-200.
[15] N. Ljubesic, M. Wrischer, T. Prebeg and Z. Devidé, “Structural Changes of Lamellar Cells in Leaves of the Moss Polytrichum formosum Hedw. during Winter Freezing and Thawing Processes,” Acta Botanica Croatica, Vol. 64, No. 2, 2005, pp. 219-226.
[16] K. Grodzińska and B. Godzik, “Heavy Metals and Sulphur in Mosses from Southern Spitzbergen,” Polar Research, Vol. 9, No. 2, 1991, pp. 133-140. doi:10.1111/j.1751-8369.1991.tb00609.x
[17] M. A. Watson, “Annual Periodicity of Incremental Growth in the Moss Polytrichum commune,” The Bryologist, Vol. 78, No. 4, 1975, pp. 414-422. doi:10.2307/3242163
[18] W. E. Stephens and A. Calder, “Analysis of Non-Organic Elements in Plant Foliage Using Polarised X-Ray Fluorescence Spektrometry,” Analytica Chimica Acta, Vol. 527, No. 1, 2004, pp. 89-96.
[19] D. H. S. Richardson, M. Shoreb, R. Hartreeb and R. M. Richardson, “The Use of X-Ray Fluorescence Spectrometry for the Analysis of Plants, Especially Lichens, Employed in Biological Monitoring,” Science of the Total Environment, Vol. 176, No. 1-3, 1995, pp. 97-105.
[20] M. Stikans, J. Boman and E. S. Lindgren, “Improved Technique for Quantitative XRF Analysis of Powdered Plant Samples,” X-Ray Spectrometry, Vol. 27, No. 6, 1988, pp. 367-372.
[21] J. Boman, H. Blanck, P. Standzenieks, R. P. Pettersson and N. T. Hong, “Sample Preparation and EDXRF Analysis of Element Content in Marine Algal Communities— A Tentative Approach,” X-Ray Spectrometry, Vol. 22, No. 4, 1993, pp. 260-264. doi:10.1002/xrs.1300220416
[22] A. Aslan, G. Budak and A. Karabulut, “The Amount Fe, Ba, Sr, K, Ca, and Ti in Some Lichens Growing in Erzurum Province (Turkey),” Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 88, No. 4, 2004, pp. 423-431.
[23] C. J. F. Ter Braak and P. Smilauer, “CANOCO Reference Manual and CanoDraw for Windows User’s Guide. Software for Canonical Community Ordination (Version 4.5),” Biometris, Wageningen & Ceské Budějovice, 2002.
[24] P. Sugier and B. Czarnecka, “Vascular Plants versus Mosses in Lakeland and Riverine Mires in Two Regions of Eastern Poland,” Polish Journal of Ecology, Vol. 58, No. 4, 2010, pp. 635-644.
[25] A. Fargasová, “Znecistenie Kovmi na Slovensku,” 2009. http://www.enviro-edu.sk/?page=environmentalne_problemy/znecistenie_kovmi_na_slovensku
[26] D. H. Brown and G. W. Buck, “Distribution of Potassium, Calcium and Magnesium in the Gametophyte and Sporophyte Generations of Funaria hygrometrica Hedw.,” Annals of Botany, Vol. 42, No. 4, 1978, pp. 923-929.
[27] M. D. Vázquez, J. López and A. Carballeira, “Uptake of Heavy Metals to the Extracellular and Intracellular Compartments in Three Species of Aquatic Bryophyte,” Ecotoxicology and Environmental Safety, Vol. 44, No. 1, 1999, pp. 12-24. doi:10.1006/eesa.1999.1798
[28] M. Sidhu and D. H. Brown, “A New Laboratory Technique for Studying the Effects of Heavy Metals on Bryophyte Growth,” Annals of Botany, Vol. 78, No. 6, 1996, pp. 711-717. doi:10.1006/anbo.1996.0181
[29] R. Ligrone, J. G. Duckett and K. S. Renzaglia, “Conducting Tissues and Phyletic Relationships of Bryophytes,” Philosophical Transactions of the Royal Society of London, Vol. 355, No. 1398, 2000, pp. 795-813.
[30] R. N. Chopra and P. K. Kumra, “Biology of Bryophytes,” New Age International Pvt Ltd Publishers, 2005.
[31] S. Trachtenberg and E. Zamski, “Conduction of Ionic Solutes and Assimilates in the Leptom of Polytrichum juniperinum Willd.,” Journal of Experimental Botany, Vol. 29, No. 3, 1978, pp. 719-727. doi:10.1093/jxb/29.3.719
[32] S. Huttunen, “Reproduction of the Mosses Pleurozium schreberi and Pohlia nutans in the Surroundings of Copper Smelters at Harjavalta, SW Finland,” Journal of Bryology, Vol. 25, No. 1, 2003, pp. 41-47. doi:10.1179/037366803125002644
[33] S. K. Panda and S. Choudhury, “Changes in Nitrate Reductase Activity and Oxidative Stress Response in the Moss Polytrichum commune Subjected to Chromium, Copper and Zinc Phytotoxicity,” Brazilian Journal of Plant Physiology, Vol. 17, No. 2, 2005, pp. 191-197. doi:10.1590/S1677-04202005000200001
[34] L. Klavina, O. Bikovens, I. Steinberga, V. Maksimova and L. Eglite, “Characterization of Chemical Composition of Some Bryophytes Common in Latvia,” Environmental and Experimental Biology, No. 10, 2012, pp. 27-34.
[35] A. Odland and R. Moral, “Thirteen Years of Wetland Vegetation Succession Following a Permanent Drawdown, Myrkdalen Lake, Norway,” Plant Ecology, Vol. 162, No. 2, 2002, pp. 185-198. doi:10.1023/A:1020388910724
[36] T. V. Callaghan, M. C. Press, J. A. Lee, D. L. Robinson and C. W. Anderson, “Spatial and Temporal Variability in the Responses of Arctic Terrestrial Ecosystems to Environmental Change, ” Polar Research, Vol. 18, No. 2, 1999, pp. 191-197. doi:10.1111/j.1751-8369.1999.tb00293.x

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.