Share This Article:

Minimal Critical Sets of Refined Inertias for Irreducible Sign Patterns of Order 2

DOI: 10.4236/alamt.2013.32002    2,322 Downloads   6,217 Views   Citations
Author(s)    Leave a comment

ABSTRACT

Let S be a nonempty, proper subset of all refined inertias. Then, S is called a critical set of refined inertias for ireducible sign patterns of order n if is sufficient for any sign pattern A to be refined inertially arbitrary. If no proper subset of Sis a critical set of refined inertias, then S is a minimal critical set of refined inertias for sign patterns of order n . In this paper, all minimal critical sets of refined inertias for irreducible sign patterns of order 2 are identified. As a by-product, a new approach is presented to identify all minimal critical sets of inertias for irreducible sign patterns of order 2.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

B. Yu, "Minimal Critical Sets of Refined Inertias for Irreducible Sign Patterns of Order 2," Advances in Linear Algebra & Matrix Theory, Vol. 3 No. 2, 2013, pp. 7-10. doi: 10.4236/alamt.2013.32002.

References

[1] F. Hall and Z. Li, “Sign Pattern Matrices,” In: L. Hogben, Ed., Handbook of Linear Algebra, Chapman & Hall/CRC Press, Boca Ration, 2007.
[2] R. A. Horn and C. R. Johnson, “Matrix Analysis,” Cambridge University Press, New York, 1985. doi:10.1017/CBO9780511810817
[3] L. Deaett, D. D. Olesky and P. van den Driessche, “Refined Inertially and Spectrally Arbitrary Zero-Nonzero Patterns,” The Electronic Journal of Linear Algebra, Vol. 20, 2010, pp. 449-467.
[4] M. S. Cavers and K. N. Vander Meulen. “Spectrally and Inertially Arbitrary Sign Patterns,” Linear Algebra and Its Applications, Vol. 394, No. 1, 2005, pp. 53-72. doi:10.1016/j.laa.2004.06.003
[5] M. S. Cavers, K. N. Meulen and L. Vanderspek. “Sparse Inertially Arbitrary Patterns,” Linear Algebra and Its Applications, Vol. 431, No. 11, 2009, pp. 2024-2034. doi:10.1016/j.laa.2009.06.040
[6] I. J. Kim, D. D. Olesky and P. van den Driessche, “Critical Sets of Inertias for Matrix Patterns,” Linear and Multilinear Algebra, Vol. 57, No. 3, 2009, pp. 293-306. doi:10.1080/03081080701616672
[7] B. L. Yu, T. Z. Huang, J. Luo and H. B. Hua, “Critical Sets of Refined Inertias for Irreducible Zero-Nonzero Patterns of Orders 2 and 3,” Linear Algebra and Its Applications, Vol. 437, No. 2, 2012, pp. 490-498. doi:10.1016/j.laa.2012.03.007

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.