Share This Article:

Tuning Entanglement Patterns in Qubits Clusters

Abstract Full-Text HTML XML Download Download as PDF (Size:709KB) PP. 85-92
DOI: 10.4236/jqis.2013.32013    3,945 Downloads   5,925 Views   Citations

ABSTRACT

We identify patterns of ground state entanglement, or quantum discord, in qubit clusters with three and four qubits, that are induced by varying the couplings between next-nearest neighbors in the clusters. We show that these entanglement patterns can be associated with continuous multiply connected regions in parameter space, on which entanglement quantifiers, such as the pairwise concurrence, exhibit a particular type of behavior as a function of the couplings between next-nearest neighbors in the cluster. We present the distinct patterns in diagrams in parameter space with continuous boundary lines and we associate each pattern to a specific type of pure quantum correlation. We propose this procedure as a simple method to identify useful classes of pure quantum correlations in qubit networks.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Santos, F. and Macêdo, A. (2013) Tuning Entanglement Patterns in Qubits Clusters. Journal of Quantum Information Science, 3, 85-92. doi: 10.4236/jqis.2013.32013.

References

[1] A. Einstein, B. Podolsky and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” Physical Review, Vol. 47, No. 10, 1935, pp. 777-780. doi:10.1103/PhysRev.47.777
[2] J. S. Bell, “On the Einstein Podolsky Rosem Paradox,” Physics, Vol. 1, 1964, pp. 195-200.
[3] C. H. Bennett and D. P. DiVincenzo, “Quantum Information and Computation,” Nature, Vol. 404, pp. 247-255. doi:10.1038/35005001
[4] M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information,” Cambridge University Press, Cambridge, New York, 2000.
[5] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, “Quantum Entanglement,” Reviews of Modern Physics, Vol. 81, No. 2, 2009, pp. 865-942. doi:10.1103/RevModPhys.81.865
[6] L. Amico, R. Fazio, A. Osterloch and V. Vedral, “Entanglement in Many-Body Systems,” Reviews of Modern Physics, Vol. 80, No. 2, 2008, pp. 517-576. doi:10.1103/RevModPhys.80.517
[7] S. Sachdev, “Quantum Phase Transitions,” 2nd Edition, Cambridge University Press, New York, 2011. doi:10.1017/CBO9780511973765
[8] G. Vidal, J. I. Latorre, E. Rico and A. Kitaev, “Entanglement in Quantum Critical Phenomena,” Physical Review Letters, Vol. 90, No. 22, 2003, Article ID: 227902. doi:10.1103/PhysRevLett.90.227902
[9] J. I. Latorre, E. Rico and G. Vidal, “Ground State Entanglement in Quantum Spin Chains,” Quantum Information and Computation, Vol. 4, 2004, pp. 48-92.
[10] T. J. Osborne and M. A. Nielsen, “Entanglement in a Simple Quantum Phase Transition,” Physical Review A, Vol. 66, No. 3, 2002, Article ID: 032110. doi:10.1103/PhysRevA.66.032110
[11] A. Osterloh, L. Amico, G. Falci and R. Fazio, “Scaling of Entanglement Close to a Quantum Phase Transition”, Nature, Vol. 416, 2002, pp. 608-610. doi:10.1038/416608a
[12] J. Vidal, G. Palacios and R. Mosseri, “Entanglement in a Second-Order Quantum Phase Transition,” Physical Review A, Vol. 69, No. 2, 2004, Article ID: 022107. doi:10.1103/PhysRevA.69.022107
[13] J. I. Latorre, R. Orus, E. Rico and J. Vidal, “Entanglement Entropy in the Lipkin-Meshkov-Glick Model,” Physical Review A, Vol. 71, No. 6, 2005, Article ID: 064101. doi:10.1103/PhysRevA.71.064101
[14] S. Dusuel and J. Vidal, “Continuous Unitary Transformations and Finite-Size Scaling Exponents in the Lipkin-Meshkov-Glick Model,” Physical Review B, Vol. 71, No. 22, 2005, Article ID: 224420. doi:10.1103/PhysRevB.71.224420
[15] X.-G. Wen, “Quantum Field Theory of Many-Body Systems,” Oxford University Press, Oxford, New York, 2004.
[16] G. L. Kamta and A. F. Starace, “Anisotropy and Magnetic Field Effects on the Entanglement of a Two Qubit Heisenberg XY Chain,” Physical Review Letters, Vol. 88, No. 10, 2002, Article ID: 107901. doi:10.1103/PhysRevLett.88.107901
[17] X. Wang, “Entanglement in the Quantum Heisenberg XY Model,” Physical Review A, Vol. 64, No. 1, 2001, Article ID: 012313. doi:10.1103/PhysRevA.64.012313
[18] S.-J. Gu, H. Li, Y.-Q. Li and H.-Q. Lin, “Entanglement of the Heisenberg Chain with the Next-Nearest-Neighbor Interaction,” Physical Review A, Vol. 70, No. 5, 2004, Article ID: 052302. doi:10.1103/PhysRevA.70.052302
[19] F. B. M. dos Santos, R. M. Dias and A. M. S. Macêdo, “Entanglement Patterns and Pure Quantum Correlations in the Heisenberg XY Model,” Physical Review A, Vol. 79, No. 3, 2009, Article ID: 032329. doi:10.1103/PhysRevA.79.032329
[20] K. Wu, B. Zhou and W. Cao, “Thermal Entanglement in a Four-Qubit Heisenberg Spin Model with External Magnetic Fields,” Physics Letters A, Vol. 362, No. 5-6, 2007, pp. 381-389. doi:10.1016/j.physleta.2006.10.045
[21] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Physical Review Letters, Vol. 83, No. 20, 1999, pp. 4204-4207. doi:10.1103/PhysRevLett.83.4204
[22] J. I. Cirac and P. Zoller, “A Scalable Quantum Computer with Ions in an Array of Microtraps,” Nature, Vol. 404, 2000, pp. 579-581. doi:10.1038/35007021
[23] Y. Makhlin, G. Schön and A. Shnirman, “JosephsonJunction Qubits with Controlled Couplings,” Nature, Vol. 398, 1999, pp. 305-307, doi:10.1038/18613
[24] A. P. Hines and P. C. E. Stamp, “Quantum Walks, Quantum Gates, and Quantum Computers”, Physical Review A, Vol. 75, No. 6, 2007, Article ID: 062321. doi:10.1103/PhysRevA.75.062321
[25] M. C. Arnesen, S. Bose and V. Vedral, “Natural Thermal and Magnetic Entanglement in the 1D Heisenberg Model,” Physical Review Letters, Vol. 87, No. 1, 2001, Article ID: 017901. doi:10.1103/PhysRevLett.87.017901
[26] A. Hutton and S. Bose, “Comparison of Star and Ring Topologies for Entanglement Distribution,” Physical Review A, Vol. 66, No. 3, 2002, Article ID: 032320. doi:10.1103/PhysRevA.66.032320
[27] A. Hutton and S. Bose, “Mediated Entanglement and Correlations in a Star Network of Interacting Spins,” Physical Review A, Vol. 69, No. 4, 2004, Article ID: 042312. doi:10.1103/PhysRevA.69.042312
[28] H. Ollivier and W. Zurek, “Quantum Discord: A Measure of the Quantumness of Correlations,” Physical Review Letters, Vol. 88, No. 1, 2001, Article ID: 017901. doi:10.1103/PhysRevLett.88.017901
[29] T. Werlang and G. Rigolin, “Thermal and Magnetic Quantum Discord in Heisenberg Models”, Physical Review A, Vol. 81, No. 4, 2010, Article ID: 044101. doi:10.1103/PhysRevA.81.044101
[30] A. Datta, A. Shaji and C. M. Caves, “Quantum Discord and the Power of One Qubit,” Physical Review Letters, Vol. 100, No. 5, 2008, Article ID: 050502. doi:10.1103/PhysRevLett.100.050502
[31] X.-G. Wen, “Quantum Orders in an Exact Soluble Model,” Physical Review Letters, Vol. 90, No. 1, 2003, Article ID: 016803. doi:10.1103/PhysRevLett.90.016803
[32] X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, “Symmetry Protected Topological Orders and the Group Cohomology of Their Symmetry Group,” arXiv:cond-mat/1106.4772, 2012.
[33] W. K. Wootters, “Entanglement of Formation of an Arbitrary State of Two Qubits,” Physical Review Letters, Vol. 80, No. 10, 1998, pp. 2245-2248. doi:10.1103/PhysRevLett.80.2245
[34] D. A. Meyer and N. R. Wallach, “Global Entanglement in Multiparticle Systems,” Journal of Mathematical Physics, Vol. 43, No. 9, 2002, p. 4273. doi:10.1063/1.1497700
[35] V. Coffman, J. Kundu and W. K. Wootters, “Distributed Entanglement,” Physical Review A, Vol. 61, No. 5, 2000, Article ID: 052306. doi:10.1103/PhysRevA.61.052306
[36] T. J. Osborne and F. Verstraete, “General Monogamy Inequality for Bipartite Qubit Entanglement,” Physical Review Letters, Vol. 96, No. 22, 2006, Article ID: 220503. doi:10.1103/PhysRevLett.96.220503

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.