RNA Wave for the HIV Therapy: Foods, Stem Cells and the RNA Information Gene

Abstract

The microRNA (miRNA) gene is small RNA molecule, approximate 20 nucleotides (nts) in length, and also the miRNA is information in a cell as well as the mobile genetic information; therefore, when only one kind of tumor suppressor RNA information gene (Rig) was intravenously administrated, tumorigenic cells can be retuned to the normal cells in vivo. Although the processes of oncogenic have multiple ways, Rig can control its complex system, such as cell cycle with tuning to translation and transcription processing systems. In quite recent experiments, human breast milk and bovine milk have contained Rigs into their microvesicular components. Both also contain the infant nutrient elements. Further, the siRNA genes in artificial nanoparticles were delivered via oral and could restore mouse intestinal inflamemation. In general, Rigs in the diet were found stable to orally affect the digested animals, therefore, the xenotropic Rigs in Rig transgenic plants could also protect from HIV-1 infection by the edible vaccine via intestinal cells. Because orally delivered miRNA as information could be incorporated into intestinal cells and transmitted into intra- and inter-cells and between individuals to wave the system of translation and transcription. Given these mobile characters of Rigs, even though there is the xenotropic miRNA issue, edible Rig agents in plants as a vaccine would be applicable for the Rig diseases (RigDs) by the information technology-based therapy (iTBT) cooperated with system-based therapies such as stem cell therapy and chemotherapy.

Share and Cite:

Y. Fujii, "RNA Wave for the HIV Therapy: Foods, Stem Cells and the RNA Information Gene," World Journal of AIDS, Vol. 3 No. 2, 2013, pp. 131-146. doi: 10.4236/wja.2013.32018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. R. Fujii, “RNA Genes: Retroelements and Virally Retroposable microRNAs in Human Embryonic Stem Cells,” The Open Virology Journal, Vol. 4, 2010, pp. 63-75. doi:10.2174/1874357901004010063
[2] H. H. Kazazian Jr., “Mobile Elements: Divers of Genome Evolution,” Science, Vol. 303, No. 5664, 2004, pp. 1626-1632. doi:10.1126/science.1089670
[3] S. R. Wessler, “Transposable Elements and the Evolution of Eukaryotic Genomes,” Proceedings the National Academy of Sciences the USA, Vol. 103, No. 47, 2006, pp. 17600-17610. doi:10.1073/pnas.0607612103
[4] R. Cordaux and M. A. Batzer, “The Impact of Retrotransposons on Human Genome Evolution,” Nature Review Genetics, Vol. 10, No. 10, 2009, pp. 691-703. doi:10.1038/nrg2640
[5] J. Li, Y. Liu, X. Xin, T. S. Kim, E. A. Cabeza, J. Ren, R. Nielsen, J. L. Wrana and Z. Zhang, "Evidence for Positive Selection on a Number of microRNA Regulatory Interactions during Recent Human Evolution,” PLoS Genetics, Vol. 8, No. 3, 2012, Article ID: e1002578. doi:10.1371/journal.pgen.1002578
[6] N. V. Rozhkov, N. G. Schostak, E. S. Zelentsova, I. A. Yushenova, O. G. Zatsepina and M. B. Evgen’ev, “Evolution and Dynamics of Small RNA Response to a Retroelement Invasion in Drosophila,” Molocular Biology and Evolution, Vol. 30, No. 2, 2012, pp. 397-480. doi:10.1093/molbev/mss241
[7] C. Feschotte, N. Jiang and S. R. Wessler, “Plant Transposable Elements: Where Genetics Meets Genomics,” Nature Review Genetics, Vol. 3, No. 2, 2002, pp. 329-341. doi:10.1038/nrg793
[8] P. S. Schnable, D. Ware, R. S. Fulton, J. C. Stein, F. Wei, S. Pastemak, C. Liang, J. Zhang, L. Fulton, T. A. Graves, P. Minx, A. D. Reily, L. Courtney, S. S. Kruchowski, C. Tomlinson, C. Strong, K. Delehaunty, C. Fronick, B. Courtney, S. M. Rock, E. Belter, F. Du, K. Kim, R. M. Abbott, M. Cotton, A. Levy, P. Marchetto, K. Ochoa, S W. M. Jackson, B. Gillam, W. Chen, L. Yan, J. Higginbotham, M. Cardenas, J. Waligorski, E. Applebaum, L. Phelps, J. Falcone, K. Kanchi, T. Thane, A. Scimone, N. Thane, J. Henke, T. Wang, J. Ruppert, N. Shah, K. Rotter, J. Hodges, E. Ingenthron, M. Cordes, S. Kohlberg, J. Sgro, B. Delgado, K. Mead, A. Chinwalla, S. Leonard, K. Crouse, K. Collura, D. Kudrna, J. Currie, R. He, A. Angelova, S. Rajasekar, T. Mueller, R. Lomeli, G. Scara, A. Ko, K. Delaney, M. Wissotski, G. Lopez, D. Campos, M. Braidotti, E. Ashley, W. Golser, H. Kim, S. Lee, J. Lin, Z. Dujmic, W. Kim, J. Talag, A. Zuccolo, C. Fan, A. Sebastian, M. Kramer, L. Spiegel, L. Nascimento, T. Zutavern, B. Miller, C. Ambroise, S. Miller, W. Spooner, A. Narechania, L. Ren, S. Wei, S. Kumari, B. Faga, M. J. Lavy, L. McMaha, P. Van Buren, M. W. Vaughn, K. Ying, C. T. Yeh, S. J. Emrich, Y. Jia, A. Kalyanaraman, A. P. Hsia, W. B. Barbazuk, R. S. Baucom, T. P. Brutnell, N. C. Carpita, C. Chaparro, J. M. Chia, J. M. Deragon, J. C. Estill, Y. Fu, J. A. Jeddeloh, Y. Han, H. Lee, P. Li, D. R. Lisch, S. Liu, Z. Liu, D. H. Nagel, M. C. McCann, P. SanMiguel, A. M. Myers, D. Nettleton, J. Nguyen, B. W. Penning, L. Ponnala, K. L. Schneider, D. C. Schwartz, A. Sharma, C. Soderlund, N. M. Springer, Q. Sun, H. Wang, M. Waterman, R. Westerman, T. K. Wolfgruber, L. Yang, Y. Yu, L. Zhang, S. Zhou, Q. Zhu, J. L. Bennetzen, R. K. Dawe, J. Jiang, N. Jiang, G. G. Presting, S. R. Wessler, S. Aluru, R. A. Martienssen, S. W. Clifton, W. R. McCombie, R. A. Wing and R. K. Wilson, “The B73 Maize Genome: Complexity, Diversity, and Dynamics,” Science, Vol. 326, No. 5956, 2009, pp. 1112-1115. doi:10.1126/science.1178534
[9] E. S. Lander, L.M. Linton, B. Birren, C. Nusbaum, M. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. Fitzhugh, R. Funke, D. Gage, K. Harris, A. Headford, J. Howland, L. Kann, J. Lehoczky, R. LeVine, P. McEwan, K. McKeman, J. Meldrim, J. P. Mesirov, C. Miranda, W. Morris, J. Naylor, C. Raymond, M. Rosetti, R. Santos, A. Sheridan, C. Sougnez, N. Stange-Thomann, N. Stojanovic, A. Subramanian, D. Wyman, J. Rogers, J. Sulston, R. Ainscough, S. Beck, D. Bentley, J. Burton, C. Clee, N. Carter, A. Coulson, R. Daedman, P. Deloukas, A. Dunham, I. Dunham, R. Durbin, L. French, D. Grafham, S. Gregory, T. Hubbard, S. Humphray, A. Hunt, M. Jones, C. Lloyd, A. McMurray, L. Matthews, S. Mercer, S. Milne, J. C. Mullikin, A. Mungall, R. Plumb, M. Ross, R. Shownkeen, S. Sims, R. H. Waterston, R. K. Wilson, L. W. Hillier, J. D. McPherson, M. A. Marra, E. R. Mardis, L. A. Fulton, A. T. Chinwalla, K. H. Pepin, W. R. Gish, S. L. Chissoe, M. C. Wendl, K. D. Delehaunty, T. L. Miner, A. Delehaunty, J. B. Kramer, L. L. Cook, R. S. Fulton, D. L. Johnson, P. J. Minx, S. W. Clifton, T. Hawkins, E. Branscomb, P. Predki, P. Richardson, S. Wenning, T. Slezak, N. Doggett, J. F. Cheng, A. Olsen, S. Lucas, C. Elkin, E. Uberbacher, M. Frazier, R. A. Gibbs, D. M. Muzny, S. E. Scherer, J. B. Bouck, E. J. Sodergren, K. C. Worley, C. M. Rives, J. H. Gorrell, M. L. Metzker, S. L. Naylor, R. S. Kucherlapati, D. L. Nelson, G. M. Weinstock, Y. Sakaki, A. Fujiyama, M. Hattori, T. Yada, A. Toyoda, T. Itoh, C. Kawagoe, H. Watanabe, Y. Totoki, T. Taylor, J. Weissenbach, R. Heilig, W. Saurin, F. Artiguenave, P. Brottier, T. Bruls, E. Pelletier, C. Robert, P. Wincker, D. R. Smith, L. Doucette-Stamm, M. Rubenfield, K. Weinstock, H. M. Lee, J. Dubois, A. Rosenthal, M. Platzer, G. Nyakatura, S. Taudien, A. Rump, H. Yang, J. Yu, J. Wang, G. Huang, J. Gu, L. Hood, L. Rowen, A. Madan, S. Qin, R. W. Dvis, N. A. Federspiel, A. P. Abola, M. J. Proctor, R. M. Myers, J. Schmutz, M. Dickson, J. Grimwood, D. R. Cox, M. V. Olson, R. Kaul, C. Raymond, N. Shimizu, K. Kawasaki, S. Minoshima, G. A. Evans, M. Athanasiou, R. Schultz, B. A. Roe, F. Chen, H. Pan, J. Ramser, H. Lehrech, R. Reinhardt, W. R. McCombie, M. de la Bastide, N. Dedhia, H. Bl?cker, K. Hornischer, G. Nordsiek, R. Agarwala, L. Aravind, J. A. Bailey, A. Bateman, S. Batzoglou, E. Birney, P. Bork, D. G. Brown, C. B. Burge, L. Cerutti, H. C. Chen, D. Church, M. Clamp, R. R. Copley, T. Doerks, S. R. Eddy, E. E. Eichler, T. S. Furey, J. Galagan, J. G. Gilbert, C. Harmon, Y. Hayashizaki, D. Hassler, H. Hermjakob, K. Hokamp, W. Jang, L. S. Johnson, T. A. Jones, S. Kasif, A. Kaspryzk, S. Kennedy, W. J. Kent, P. Kitts, E. V. Koonin, I. Krof, D. Kulp, D. Lancet, T. M. Lowe, A. McLysaght, T. Mikkelsen, J. V. Moran, N. Mulder, V. J. Pollara, C. P. Ponting, G. Schuler, J. Schultz, G. Slater, A. F. Smit, E. Stupka, J. Szustakowski, D. Thierry-Mieg, J. Thierry-Mieg, L. Wagner, J. Wallis, R. Wheeler, A. Williams, Y. I. Wolf, K. H. Wolfe, S. P. Yang, R. F. Yeh, F. Collins, M. S. Guyer, J. Peterson, A. Felsenfeld, K. A. Wetterstrand, A. Patrinos, M. J. Morgan, P. de Jong, J. J. Catanese, K. Osoegawa, H. Shizuya, S. Choi and Y. J. Chen, “Initial Sequencing and Analysis of the Human Genome,” Nature, Vol. 409, No. 6822, 2001, pp. 860-921. doi:10.1038/35057062
[10] H.-M. Byun, K. Heo, K. J. Mitchell and A. S. Yang, “Mono-Allelic Retrotransposon Insertion Addresses Epigenetic Transcriptional Repression in Human Genome,” Journal of Biomedical Science, Vol. 19, No. 1, 2012, p. 13. doi:10.1186/1423-0127-19-13
[11] C. Johnson, A. Kasprzewska, K. Tennessen, J. Fernandes, G.-L. Nan, V. Walbot, V. Sundaresan, V. Vance and L. H. Bowman, “Clusters and Superclusters of Phased Small RNAs in the Developing Inflorescence of Rice,” Genome Research, Vol. 19, No. 3, 2009, pp. 1429-1440. doi:10.1101/gr.089854.108
[12] P. A. Manavella, D. Koenig, and D. Weigel, “Plant Secondary siRNA Production Determined by microRNADuplex Structure,” Proceedings the National Academy of Sciences the USA, Vol. 109, No. 7, 2011, pp. 2461-2466. doi:10.1073/pnas.1200169109
[13] M. Yoshikawa, A. Peragine, M. Y. Park and R. S. Poethig, “A Pathway for the Biogenesis of Trans-Acting siRNAs in Arabidopsis,” Genes Development, Vol. 19, No. 18, 2005, pp. 2164-2175. doi:10.1101/gad.1352605
[14] D. Langenberger, C. Bermudez-Santana, J. Hertel, S. Hoffmann, P. Khaitovich and P. Stadler, “Evidence for Human microRNA-Offset RNAs in Small RNA Sequencing Data,” Bioinformatics, Vol. 25, No. 18, 2009, pp. 2298-2301. doi:10.1093/bioinformatics/btp419
[15] X. Chen, H. Liang, C.-Y. Zhang and K. Zen, “miRNA Regulates Noncoding RNA: A Noncanonical Function Model,” Trends in Biochemical Sciences, Vol. 37, No. 11, 2012, pp. 457-458. doi:10.1016/j.tibs.2012.08.005
[16] E. M. Jobe, A. L. McQuate and X. Zhao, “Crosstalk among Epigenetic Pathways Regulates Neurogenesis,” Frontiers Neurogenesis, Vol. 6, 2012, p. 59.
[17] A. A. Aravin, R. Sachidanandam, D. Bourc’his, C. Schaefer, D. Pezic, K. F. Toth, T. Bestor and G. J. Hannon, “A piRNA Pathway Primed by Individual Transposons Is Linked to de Novo DNA Methylation in Mouse,” Molecluar Cell, Vol. 31, No. 6, 2008, pp. 785-799. doi:10.1016/j.molcel.2008.09.003
[18] N. C. Schopman, M. Willemsen, Y. P. Liu, T. Bradley, A. van Kampen, F. Baas, B. Berkhout and J. Haasnoot, “Deep Sequencing of Virus-Infected Cells Reveals HIV-Encoded Small RNAs,” Nucleic Acids Research, Vol. 40, No. 1, 2011, pp. 414-427. doi:10.1093/nar/gkr719
[19] R. J. Taft, C. Simons, S. Nahkuri, H. Oey, D. Korbie, T. R. Mercer, J. Holst, W. Ritchie, J. J.-L. Wong, J. E. Rasko, D. S. Rokhsar, B. M. Degnan and J. S. Mattick, “Nuclear-Localized Tiny RNAs Are Associated with Transcription Initiation and Splice Sites in Metazoans,” Nature Structural and Molecular Biology, Vol. 17, No. 8, 2010, pp. 1030-1035. doi:10.1038/nsmb.1841
[20] M. Jiang, X. Sang and Z. Hong, “Beyond Nutrients: FoodDerived microRNAs Provide Cross-Kingdom Regulation,” Bioessays, Vol. 34, No. 4, 2012, pp. 280-284. doi:10.1002/bies.201100181
[21] Y. R. Fujii and N. K. Saksena, “Viral Infection-Related microRNAs in Viral and Host Genomic Evolution,” In: K. V. Morris, Ed., RNA and the Regulation of Gene Expression, Horizon Scientific Press, London, 2008, pp. 91-107.
[22] P. Lenzi, N. Scotti, F. Alagna, M. L. Tornesello, A. Pompa, A. Vitale, A. de Stradis, L. Monti, S. Grillo, F. M. Bounaguro, P. Maliga and T. Cardi, “Translational Fusion of Chloroplast-Expressed Human Papillomavirus Type 16 L1 Capsid Protein Enhances Antigen Accumulation in Transplastomic Tobacco,” Transgenic Research, Vol. 17, No. 6, 2008, pp. 1091-1102. doi:10.1007/s11248-008-9186-3
[23] A. Fernandez-San Millan, S. M. Ortigosa, S. HervasStubbs, P. Corral-Martinez, J. M. Segui-Simarro, J. Gaetan, P. Coursaget and J. Veramendi, “Human Papillomavirus L1 Protein Expressed in Tobacco Chloroplasts SelfAssembles into Virus-Like Particles That Are Highly Immunogenic,” Plant Biotechnology Journal, Vol. 6, No. 5, 2008, pp. 427-441. doi:10.1111/j.1467-7652.2008.00338.x
[24] P. Madesis, M. Osathanunkul, U. Georgopoulou, M. F. Gisby, E. A. Mudd, I. Nianiou, P. Tsitoura, P. Mavromara, A. Tsaftaris and A. Daya, “A Hepatitis C Virus Core Polypeptide Expressed in Chloroplasts Detects Anti-Core Antibodies in Infected Human Sera,” Journal of Biotechnology, Vol. 145, No. 4, 2010, pp. 377-386. doi:10.1016/j.jbiotec.2009.12.001
[25] A. Modelska, B. Dietzschold, N. Sleysh, Z. F. Fu, K. Steplewski, D. C. Hooper, H. Koprowski and V. Yusibov, “Immunization against Rabies with Plant-Derived Antigen,” Proceedings the National Academy of Sciences the USA, Vol. 95, No. 5, 1998, pp. 2481-2485. doi:10.1073/pnas.95.5.2481
[26] A. H. Cathleen, M. Niezgoda, P. Morrill and C. E. Rupprecht, “Oral Efficacy of an Attenuated Rabies Virus Vaccine in Skunks and Raccoons,” Journal of Wildlife Diseases, Vol. 38, No. 2, 2002, pp. 420-427.
[27] M. Lee, Y. Zhou, R. Lung, M. L. Chye, W. K. Yip, S. Y. Zee and E. Lam, “Expression of Viral Capsid Protein Antigen against Epstein-Barr Virus in Plastids of Nicotiana tabacum cv. SR1,” Biotechnology and Bioengineering, Vol. 94, No. 6, 2006, pp. 1129-1137. doi:10.1002/bit.20948
[28] V. Yusibov, A. Modelska, K. Steplewski, M. Agadjanyan, D. Weiner, D. C. Hooper and H. Koprowski, “Antigen Produced in Plants by Infection with Chimeric Plant Viruses Immunize against Rabies Virus and HIV-1,” Proceedings the National Academy of Sciences the USA, Vol. 94, No. 11, 1997, pp. 5784-5788. doi:10.1073/pnas.94.11.5784
[29] G. G. Zhang, L. Rodrigues, B. Rovinski and K. A. White, “Production of HIV-1 p24 Protein in Transgenic Tobacco Plants,” Molecular Biotechnology, Vol. 20, No. 2, 2002, pp. 131-136. doi:10.1385/MB:20:2:131
[30] J. Wang and Q. Cui, “Specific Roles of microRNAs in Their Interactions with Environmental Factors,” Journal of Nucleic Acids, Vol. 2012, 2012, Article ID: 978384. doi:10.1155/2012/978384
[31] F. J. Palella Jr., K. M. Delaney, A. C. Moorman, M. O. Loveless, J. Fuhrer, G. A. Satten, D. J. Aschman and S. D. Holmberg, “HIV Outpatient Study Investigations; Declining Morbidity and Mortality among Patients with Advanced Human Immunodeficiency Virus Infection,” New England Journal of Medicine, Vol. 338, No. 13, 1998, pp. 853-860. doi:10.1056/NEJM199803263381301
[32] J. Lekakis and I. Ikonomidis, “Cardiovascular Complications of AIDS,” Current Opinion in Critical Care, Vol. 16, No. 5, 2010, pp. 408-412. doi:10.1097/MCC.0b013e32833e10a9
[33] M. Nunez, “Clinical Syndromes and Consequences of Antiretroviral-Related Hepatotoxicity,” Hepatology, Vol. 52, No. 3, 2010, pp. 1143-1155. doi:10.1002/hep.23716
[34] C. Xia, D. Luo, X. Yu, S. Jiang and S. Liu, “HIV-Associated Dementia in the Era of Highly Active Antiretroviral Therapy (HAART),” Microbes Infection, Vol. 13, No. 5, 2011, pp. 419-425. doi:10.1016/j.micinf.2011.01.004
[35] C. Besson, A. Goubar, J. Gabarre, W. Rozenbaum, G. Pialoux, F. P. Chatelet, C. Katlama, F. Charlotte, B. Dupont, N. Brousse, M. Huerre, J. Mikol, P. Camparo, K. Mokhtari, M. Tulliez, D. Salmon-Céron, F. Boué, D. Costaqliola and M. Raphael, “Changes in AIDS-Related Lymphoma since the Era of Highly Active Antiretroviral Therapy,” Blood, Vol. 98, No. 8, 2001, pp. 2339-2344. doi:10.1182/blood.V98.8.2339
[36] J. J. Goedert, “The Epidemiology of Acquired Immunodeficiency Syndrome Malignancies,” Seminars in Oncology, Vol. 27, No. 4, 2000, pp. 390-401.
[37] A. S. Fauci, G. Pantaleo, S. Stanley and D. Weissman, “Immunopathogenic Mechanisms of HIV Infection,” Annals of Internal Medicine, Vol. 124, No. 7, 1996, pp. 654-663. doi:10.7326/0003-4819-124-7-199604010-00006
[38] E. Eisele and R. F. Siliciano, “Redefining the Viral Reservoirs that Prevent HIV-1 Eradication,” Immunity, Vol. 37, No. 3, 2012, pp. 377-388.
[39] C. Kamp, T. Wolf, I. G. Bravo, B. Kraus, B. Krause, B. Neumann, G. Winskowsky, A. Thielen, A. Werner and B. S. Schnierle, “Decreased HIV Diversity after Allogeneic Stem Cell Transplantation of an HIV-1 Infected Patient,” Virology Journal, Vol. 7, 2010, p. 55. doi:10.1186/1743-422X-7-55
[40] G. Hütter and J. A. Zaia, “Allogeneic Haematopoietic Stem Cell Transplantation in Patients with Human Immunodeficiency Virus: The Experiences of More than 25 Years,” Clinical and Experimental Immunology, Vol. 163, No. 3, 2011, pp. 284-295. doi:10.1111/j.1365-2249.2010.04312.x
[41] K. Allers, G. Hütter, J. Hofmann, C. Loddenkemper, K. Rieger, E. Thiel and T. Schneider, “Evidence for the Cure of HIV Infection by CCR532/32 Stem Cell Transplantation,” Blood, Vol. 117, No. 10, 2011, pp. 2791-2799. doi:10.1182/blood-2010-09-309591
[42] J. A. Hoxie and C. H. June, “Novel Cell and Gene Therapies for HIV,” Cold Spring Harbor Perspectives in Medicine, Vol. 2, No. 10, 2012, Article ID: a007179.
[43] Y. R. Fujii, “The Xenotropic microRNA Gene Information for Stem Cell Researches and Clinical Applications,” Stem Cell Discovery, Vol. 3, No. 1, 2013, pp. 32-36. doi:10.4236/scd.2013.31005
[44] S.-Y. Ying, D. C. Chang and S.-L. Lin, “The microRNA,” Methods in Molecular Biology, Vol. 936, 2013, pp. 1-19. doi:10.1007/978-1-62703-083-0_1
[45] S. Vasudevan, “Posttranscriptional Upregulation by microRNAs,” Wiley Interdisciplinary Reviews RNA, Vol. 3, No. 3, 2012, pp. 311-330. doi:10.1002/wrna.121
[46] A. Eulalio, E. Huntzinger and E. Izaurralde, “Getting to the Root of miRNA-Mediated Gene Silencing,” Cell, Vol. 132, No. 1, 2008, pp. 9-14. doi:10.1016/j.cell.2007.12.024
[47] E. Meiri, A. Levy, H. Benjamin, M. Ben-David, L. Cohen, A. Dov, N. Dromi, E. Elyakim, N. Yerushalmi, O. Zion, G. Lithwick-Yanai and E. Sitbon, “Discovery of microRNAs and Other Small RNAs in Solid Tumors,” Nucleic Acids Research, Vol. 38, No. 18, 2010, pp. 6234-6246. doi:10.1093/nar/gkq376
[48] S. Djuranovic, M. K. Zinchenko, J. K. Hur, A. Nahvi, J. L. Brunelle, E. J. Rogers and R. Green, “Allosteric Regulation of Argonaute Proteins by miRNAs,” Nature Structural and Molecular Biology, Vol. 17, No. 2, 2010, pp. 144-150.
[49] S. Djuranovic, A. Nahvi and R. Green, “MiRNA-Mediated Gene Silencing by Translational Repression Followed by mRNA Deadenylation and Decay,” Science, Vol. 336, No. 6078, 2012, pp. 237-240. doi:10.1126/science.1215691
[50] T. Esposito, S. Magliocca, D. Formicola and F. Gianfrancesco, “PiR_015520 Belongs to Piwi-Associated RNAs Regulates Expression of the Human Melatonin Receptor 1A Gene,” PLoS One, Vol. 6, No. 7, 2011, p. e22727. doi:10.1371/journal.pone.0022727
[51] F. Zhuang, M. Mastroianni, T. B. White and A. M. Lambowitz, “Linear Group II Intron RNAs Can Retrohome in Eukaryotes and May Use Nonhomologous End-Joining for cDNA Ligation,” Proceedings the National Academy of Sciences the USA, Vol. 106, No. 43, 2009, pp. 18189-18194. doi:10.1073/pnas.0910277106
[52] S. A. Krawetz, A. Kruger, C. Lalancette, R. Tagett, E. Anton, S. Draghici and M. P. Diamond, “A Survey of Small RNAs in Human Sperm,” Human Reproduction, Vol. 26, No. 12, 2011, pp. 3401-3412. doi:10.1093/humrep/der329
[53] L. Chen, J. E. Dahlstrom, S.-H. Lee and D. Rangasamy, “Naturally Occurring Endo-SiRNA Silences LINE-1 Retrotransposons in Human Cells through DNA Methylation,” Epigenetics, Vol. 7, No. 7, 2012, pp. 1-14. doi:10.4161/epi.20706
[54] T. Mourier and E. Willerslev, “Retrotransposons and NonProtein Coding RNAs,” Brifings in Functional Genomics, Vol. 8, No. 6, 2009, pp. 493-501. doi:10.1093/bfgp/elp036
[55] J. S. Shapiro, R. A. Langlois, A. M. Pham and B. R. Tenoever, “Evidence for a Cytoplasmic Microprocessor of Pri-miRNAs,” RNA, Vol. 18, No. 7, 2012, pp. 1338-1346. doi:10.1261/rna.032268.112
[56] C. F. Althaus, V. Vongrad, B. Niederost, B. Joos, F. di Giallonardo, P. Rieder, J. Pavlovic, A. Trkola, H. F. Günthard, K. Metzner and M. Fischer, “Tailored Enrichment Strategy Detects Low Abundant Small Noncoding RNAs in HIV-1 Infected Cells,” Retrovirology, Vol. 9, 2012, p. 27. doi:10.1186/1742-4690-9-27
[57] J. Brennecke, A. Stark, R. B. Russell and S. M. Cohen, “Principles of microRNA-Target Recognition,” PLoS Biology, Vol. 3, 2005, e85.
[58] A. Grimson, K. K.-H. Farh, W. K. Johnston, L. P. Lim and D. P. Bartel, “MicroRNA Targeting Specificity in Mammals: Determinants beyond Seed Pairing,” Moecular Cell, Vol. 27, No. 1, 2007, pp. 91-105.
[59] R. C. Friedman, K. K.-H. Farh, C. B. Burge and D. P. Bartel, “Most Mammalian mRNAs Are Conserved Targets of microRNAs,” Genome Research, Vol. 19, No. 1, 2009, pp. 92-105. doi:10.1101/gr.082701.108
[60] A. A. Bazzini, M. T. Lee and A. J. Giraldez, “Ribosome Profiling Shows that miR-430 Reduces Translation before Causing mRNA Decay in Zebrafish,” Science, Vol. 336, No. 6078, 2012, pp. 233-237. doi:10.1126/science.1215704
[61] S. Djuranovic, A. Nahvi and R. Green, “A Parsimonious Model for Gene Regulation by miRNAs,” Science, Vol. 331, No. 6017, 2011, pp. 550-553. doi:10.1126/science.1191138
[62] R. Zhang and B. Su, “MicroRNA Regulation and the Variability of Human Cortical Gene Expression,” Nucleic Acids Research, Vol. 36, No. 14, 2008, pp. 4621-4628.
[63] N. Li, A. S. Flynt, R. Kim, L. Solnica-Krezel and J. G. Patton, “Dispatched Homolog 2 Is Targeted by miR-214 through a Combination of Three Weak microRNA Recognition Sites,” Nucleic Acids Research, Vol. 36, No. 13, 2008, pp. 4277-4285. doi:10.1093/nar/gkn388
[64] L. Zhang, D. Hou, X. Chen, D. Li, L. Zhu, Y. Zhang, J. Li, Z. Bian, X. Liang, X. Cai, Y. Yin, C. Wang, T. Zhang, D. Zhu, D. Zhang, J. Xu, J. Zhang, K. Zen and C.-Y. Zhang, “Exogenous Plant MIR168a Specifically Targets Mammalian LDLRAP1: Evidence of Cross-Kingdom Regulation by microRNA,” Cell Research, Vol. 22, No. 1, 2012, pp. 107-126. doi:10.1038/cr.2011.158
[65] A. Frohn, H. C. Eberl, J. Sth?r, E. Glasmacher, S. Rüdel, V. Heissmeyer, M. Mann and G. Meister, “Dicer-Dependent and Independent Argonaute 2 Protein Interaction Network in Mammalian Cells,” Molecular and Cellular Proteomics, Vol. 11, No. 11, 2012, pp. 1442-1456. doi:10.1074/mcp.M112.017756
[66] Y. R. Fujii, “Formulation of New Algorithmics for miRNAs,” The Open Virology Journal, Vol. 2, 2008, pp. 37-43. doi:10.2174/1874357900802010037
[67] Y. R. Fujii, “The RNA Gene Information: RetroelementmicroRNA Entangling as the RNA Quantum Code,” Methods in Molecular Biology, Vol. 936, 2013, pp. 47-67. doi:10.1007/978-1-62703-083-0_4
[68] V. K. Velu, R. Ramesh and A. R. Srinvasan, “Circulating microRNAs as Biomarkers in Health and Disease,” Journal of Clinical and Diagnostic Research, Vol. 6, No. 10, 2012, pp. 1791-1795.
[69] N. S. Ozek, S. Tuna, A. E. Erson-Bensan and F. Severcan, “Characterization of microRNA-125b Expression in MCF7 Breast Cancer Cells by ATR-FTIR Spectroscopy,” The Analyst, Vol. 135, No. 12, 2010, pp. 3094-3102. doi:10.1039/c0an00543f
[70] D. Wang, Z. Zhang, E. O'Loughlin, T. Lee, S. Houel, D. O'Carroll, A. Tarakhovsky, N. G. Ahn and R. Yi, “Quantitative Functions of Argonaute Proteins in Mammalian Development,” Genes & Development, Vol. 26, No. 7, 2012, pp. 693-704.
[71] M. M. Janas, B. Wang, A. S. Harris, M. Aguiar, J. M. Shaffer, Y. V. B. K. Subrahmanyam, M. A. Behike, K. W. Wucherpfennig, S. P. Gygi, E. Gagnon and C. D. Novina, “Alternative RISC Assembly: Binding and Repression of microRNA-mRNA Duplexes by Human Ago Proteins,” RNA, Vol. 18, No. 11, 2012, pp. 2041-2055. doi:10.1261/rna.035675.112
[72] I. Carmel, N. Shomron and Y. Heifetz, “Does Base-Pairing Strength Play a Role in microRNA Repression?” RNA, Vol. 18, No. 11, 2012, pp. 1947-1956. doi:10.1261/rna.032185.111
[73] L. Salmena, L. Poliseno, Y. Tay, L. Kats and P. P. Pandolfi, “A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language?” Cell, Vol. 146, No. 3, 2011, pp. 353-358. doi:10.1016/j.cell.2011.07.014
[74] L. Lipovich, R. Johnson, and C.-Y. Lin, “MacroRNA Underdogs in a microRNA World: Evolutionary, Regulatory, and Biomedical Significance of Mammalian Long Non-Protein-Coding RNA,” Biochemica et Biophysica Acta, Vol. 1799, No. 9, 2010, pp. 597-615. doi:10.1016/j.bbagrm.2010.10.001
[75] Y. R. Fujii, “Symphony of AIDS: A microRNA-Based Therapy,” In: R. K. Gaur and J. J. Rossi, Eds., Regulation of Gene Expression by Small RNAs, CRC Press, New York, 2009, pp. 333-349. doi:10.1201/9781420008708.ch18
[76] H. Hartman, “Speculations on the Evolution of the Genetic Code,” Origins of Life, Vol. 6, No. 3, 1975, pp. 423-427. doi:10.1007/BF01130344
[77] S. Rodin and S. Ohno, “Four Primordial Modes of tRNASynthetase Recognition, Determined by the (G, C) Operational Code,” Proceedings the National Academy of Sciences the USA, Vol. 94, No. 10, 1997, pp. 5187-5188. doi:10.1073/pnas.94.10.5183
[78] T. Gu, F. W. Buaas, A. K. Simons, C. L. Ackert-Bicknell, R. E. Braun and M. A. Hibbs, “Canonical A-to-I and C-to-U RNA Editing is Enriched at 3’ UTRs and microRNA Target Sites in Multiple Mouse Tissues,” PLoS One, Vol. 7, 2012, e33720. doi:10.1371/journal.pone.0033720
[79] A. K. L. Leung, A. G. Young, A. Bhutkar, G. X. Zheng, A. D. Bosson, C. B. Nielsen and P. A. Sharp, “GenomeWide Identification of Ago2 Binding Sites from Mouse Embryonic Stem Cells with and without Mature microRNAs,” Nature Structural and Molecular Biology, Vol. 18, No. 2, 2011, pp. 237-244.
[80] S. W. Chi, G. J. Hannon and R. B. Darnell, “An Alternative Mode of microRNA Target Recognition,” Nature Structural and Molecular Biolology, Vol. 19, No. 3, 2012, pp. 321-327.
[81] N. R. Smalheiser and V. I. Torvik, “A Population-Based Statistical Approach Identifies Parameters Characteristic of Human microRNA-mRNA Interactions,” BMC Bioinformatics, Vol. 5, 2004, p. 139. doi:10.1186/1471-2105-5-139
[82] M. Rossbach, “Non-Coding RNAs in Neural Networks, REST-Assured,” Frontiers in Genetics, Vol. 2, 2011, p. 8. doi:10.3389/fgene.2011.00008
[83] E. F. Heuston, K. T. Lemon and R. J. Arceci, “The Beginning of the Road for Non-Coding RNAs in Normal Hematopoiesis and Hematologic Malignancies,” Frontiers in Genetics, Vol. 2, 2011, p. 94. doi:10.3389/fgene.2011.00094
[84] D. Didiano and O. Hobert, “Molecular Architecture of a miRNA-Regulated 3’ UTR,” RNA, Vol. 14, No. 7, 2008, pp. 1297-1317. doi:10.1261/rna.1082708
[85] P. S. Pang, E. A. Pham, M. Elazar, S. G. Patel, M. R. Eckart and J. S. Glenn, “Structural Map of a microRNA122: HCV Complex,” Journal of Virology, Vol. 86, No. 2, 2012, pp. 1250-1254. doi:10.1128/JVI.06367-11
[86] M. Kertesz, N. Iovino, U. Unnerstall, U. Gaul and E. Segal, “The Role of Site Accessibility in microRNA Target Recognition,” Nature Genetics, Vol. 39, No. 10, 2007, pp. 1278-1284.
[87] J. Dunningham, K. Burnett, and W. D. Phillips, “BoseEinstein Condensates and Precision Measurements,” Philosophical Transactions. Series A, Mathmatical, Physical, and Engineering Sciences, Vol. 363, No. 1834, 2005, pp. 2165-2175. doi:10.1098/rsta.2005.1636
[88] J. Estève, C. Gross, A. Weller, S. Giovanazzi and M. K. Oberthaler, “Squeezing and Entanglement in a Bose-Einstein Condensate,” Nature, Vol. 455, No. 7217, 2008, pp. 1216-1219.
[89] V. Tarallo, Y. Hirano, B. D. Gelfand, B. D. Gelfand, S. Dridi, N. Kerur, Y. Kim, W. G. Cho, H. Kaneko, B. J. Fowler, S. Bogdanovich, R. J. Albuquerque, W. W. Hauswirth, V. A. Chiodo, J. F. Kugel, J. A. Goodrich, S. L. Ponicsan, G. Chaudhuri, M. P. Murphy, J. L. Dunaief, B. K. Ambati, Y. Ogura, J. W. Yoo, D. K. Lee, P. Provost, D. R. Hinton, G. Núńez, M. E. Kleinman and J. Ambati, “DICER 1 Loss and Alu RNA Induce Age-Related Macular Degeneration via the NLRP3 Inflammasome and MyD88,” Cell, Vol. 149, No. 4, 2011, pp. 847-859. doi:10.1016/j.cell.2012.03.036
[90] J. K. Baillie, M. W. Barnett, K. R. Upton, D. J. Gerhardt, T. A. Richmond, F. de Sapio, P. M. Brennan, P. Rizzu, S. Smith, M. Fell, R. T. Talbot, S. Gustincich, T. C. Freeman, J. S. Mattick, D. A. Hume, P. Heutink, P. Carninci, J. A. Jeddeloh and G. J. Faulkner, “Somatic Retrotransposition Alters the Genetic Landscape of the Human Brain,” Nature, Vol. 479, No. 7374, 2011, pp. 534-537.
[91] S. Omoto, M. Ito, Y. Tsutsumi, Y. Ichikawa, H. Okuyama, E. A. Brisibe, N. K. Saksena and Y. R. Fujii, “HIV-1 Nef Suppression by Virally Encoded microRNA,” Retrovirology, Vol. 1, 2004, p. 44.
[92] Y. R. Fujii, “Lost in Translation: Regulation of HIV-1 by microRNAs and a Key Enzyme of RNA-Directed RNA Polymerase,” In: K. Appasani, Ed., MicroRNAs, Cambridge University Press, Cambridge, 2008, pp. 427-442.
[93] G. Hu, K. M. Drescher and X.-M. Chen, “Exosomal miRNAs: Biological Properties and Therapeutic Potential,” Frontiers in Genetics, Vol. 3, 2012, p. 56. doi:10.3389/fgene.2012.00056
[94] M. Mittelbrunn and F. Sánchez-Madrid, “Intercellular Communication: Diverse Structures for Exchange of Genetic Information,” Nature Reviews. Molecular Cell Biology, Vol. 13, No. 5, 2012, pp. 328-335.
[95] M. Chrupek, H. Siipi and L. Martinelli, “Bio-Objects as ‘Boundary Crawlers’: The Case of microRNAs,” Croatian Medical Journal, Vol. 53, No. 3, 2012, pp. 285-288. doi:10.3325/cmj.2012.53.285
[96] Y. Maida, M. Yasukawa, M. Furuuchi, T. Lassmann, R. Possemato, N. Okamoto, V. Kasim, Y. Hayashizaki, W. C. Hahn and K. Masutomi, “An RNA-Dependent RNA Polymerase Formed by TERT and the RMRP RNA,” Nature, Vol. 461, No. 7261, 2009, pp. 230-235.
[97] E. A. Gladyshev and I. R. Arkhipova, “A Widespread Class of Reverse Transcriptase-Related Cellular Genes,” Proceedings the National Academy of Sciences the USA, Vol. 108, No. 51, 2011, pp. 20311-20316. doi:10.1073/pnas.1100266108
[98] D. M. Shechner and D. P. Bartel, “The Structural Basis of RNA-Catalyzed RNA Polymerase,” Nature Structural and Molecular Biology, Vol. 18, No. 9, 2011, pp. 1036-1042.
[99] S. Jochum, R. Ruiss, A. Moosmann, W. Hammerschmidt and R. Zeidler, “RNAs in Epstein-Barr Virions Control Early Steps of Infection,” Proceedings the National Academy of Sciences the USA, Vol. 109, No. 21, 2012, pp. E1396-E1404. doi:10.1073/pnas.1115906109
[100] N. Kosaka, H. Iguchi, Y. Yoshida, K. Hagiwara, F. Takeshita, and T. Ochiya, “Competitive Interactions of Cancer Cells and Normal Cells via Secretory microRNAs,” Journal of Biological Chemistry, Vol. 287, No. 2, 2010, pp. 1397-1405. doi:10.1074/jbc.M111.288662
[101] Y. Zhang, D. Liu, X. Chen, J. Li, L. Li, Z. Bian, F. Sun, J. Lu, Y. Yin, X. Cai, Q. Sun, K. Wang, Y. Ba, Q. Wang, D. Wang, J. Yang, P. Liu, T. Xu, Q. Yan, J. Zhang and C. Y. Zhang, “Secreted Monocytic miR-150 Enhances Targeted Endothelial Cell Migration,” Molecular Cell, Vol. 39, No. 1, 2010, pp. 133-144. doi:10.1016/j.molcel.2010.06.010
[102] A. Turchinovich, L. Weiz, A. Langheinz and B. Burwinkel, “Characterization of Extracellular Circulating micro-RNA,” Nucleic Acids Research, Vol. 39, No. 16, 2011, pp. 7223-7233.
[103] J. D. Arroyo, J. R. Chevillet, E. M. Kroh, I. K. Ruf, C. C. Pritchard, D. F. Gibson, P. S. Mitchell, C. F. Bennett, E. L. Pogosova-Agadjanyan, D. L. Stirewalt, J. F. Tait and M. Tewari, “Argonaute 2 Complex Carry a Population of Circulating microRNAs Independent of Vesicles in Human Plasma,” Proceedings the National Academy of Sciences the USA, Vol. 108, No. 12, 2011, pp. 5003-5008. doi:10.1073/pnas.1019055108
[104] L. Li, D. Zhu, L. Huang, J. Zhang, Z. Bian, X. Chen, Y. Liu, C.-Y. Zhang and K. Zen, “Argonaute 2 Complexes Selectively Protect the Circulating microRNAs in CellSecreted Microvesicles,” PLoS One, Vol. 7, No. 10, 2012, Article ID: e46957. doi:10.1371/journal.pone.0046957
[105] Q. Zhou, M. Li, X. Wang, Q. Li, T. Wang, Q. Zhu, X. Zhou, X. Wang, X. Gao and X. Li, ”Immune-Related microRNAs Are Abundant in Breast Milk Exosomes,” International Journal of Biological Sciences, Vol. 8, No. 1, 2012, pp. 118-123. doi:10.7150/ijbs.8.118
[106] Y. Gu, M. Li, T. Wang, Y. Liang, Z. Zhong, X. Wang, Q. Zhou, L. Chen, Q. Lang, Z. He, X. Chen, J. Gong, X. Gao, X. Li and X. Lv, “Lactation-Related microRNA Expression Profiles of Porcine Breast Milk Exosomes,” PLoS One, Vol. 7, No. 8, 2012, Article ID: e43691. doi:10.1371/journal.pone.0043691
[107] T. Wurdinger, N. N. Gaston, L. Balaj, B. Kaur, X. O. Breakefielder and D. M. Pegtel, “Extracellular Vesicles and their Convergence with Viral Pathways,” Advances in Virology, Vol. 2012, 2012, Article ID: 767694. doi:10.1155/2012/767694
[108] T. Fujino and Y. Nagata, “HTLV-I Transmission from Mother to Child,” Journal of Reproductive Immunology, Vol. 47, No. 2, 2000, pp. 197-206.
[109] S. Martin-Latil, N. Gn?dig, A. Mallet, C. Prevost, M. Desdouits, A. Gessain, S. Ozden and P.-E. Ceccaldi, “Mother-to-Child Transmission of HTLV-I: In Vitro Study of HTLV-I Passage across a Tight Human Epithelial Barrier,” Retrovirology, Vol. 6, Suppl. 1, 2009, p. O3. doi:10.1186/1742-4690-6-S1-O3
[110] K. W. Witwer, A. K. Watson, J. N. Blankson and J. E. Clements, “Relationships of PBMC microRNA Expression, Plasma Viral Load, and CD4+ T-cell Count in HIV1-Infected Elite Suppressors and Viremic Patients,” Retrovirology, Vol. 9, 2012, p. 5. doi:10.1186/1742-4690-9-5
[111] M. Hoque, R. A. Shamanna, D. Guan, T. Pe’ery and M. B. Mathews, “HIV-1 Replication and Latency Are Regulated by Translational Control of Cyclin T1,” Journal of Molecular Biology, Vol. 410, No. 5, 2011, pp. 917-932. doi:10.1016/j.jmb.2011.03.060
[112] K. Chiang, T.-L. Sung and A. P. Rice, “Regulation of Cyclin T1 and HIV-1 Replication by microRNAs in Resting CD4+ T Lymphocytes,” Journal of Virology, Vol. 86, No. 6, 2012, pp. 3244-3252. doi:10.1128/JVI.05065-11
[113] C.-J. Shen, Y.-H. Jia, R.-R. Tian, M. Ding, C. Zhang and J.-H. Wang, “Translation of Pur-α Is Targeted by Cellular miRNAs to Modulate the Differentiation-Dependent Susceptibility of Monocytes to HIV-1 Infection,” Official Publication of the Federation of American Societies for Experimental Biology Journal, Vol. 26, No. 11, 2012, pp. 4755-4764. doi:10.1096/fj.12-209023
[114] L. Houzet, Z. Klase, M. L. Yeung, A. Wu, S.-Y. Le, M. Qui?ones and K.-T. Jeang, “The Extent of Sequence Complementarity Correlates with the Potency of Cellular miRNA-Mediated Restriction of HIV-1,” Nucleic Acids Research, Vol. 40, No. 22, 2012, pp. 1168-1196. doi:10.1093/nar/gks912
[115] N. C. T. Schopman, M. Willemsen, Y. P. Liu, T. Bradley, A. van Kampen, F. Baas, B. Berkhout and J. Haasnoot, “Deep Sequencing of Virus-Infected Cells Reveals HIVEncoded Small RNAs,” Nucleic Acids Research, Vol. 40, No. 1, 2011, pp. 414-427. doi:10.1093/nar/gkr719
[116] A. Gupta, P. Nagilla, H.-S. Le, C. Bunney, C. Zych, A. Thalamuthu, Z. Bar-Joseph, S. Mathavan and V. Ayyavoo, “Comparative Expression Profile of miRNA and mRNA in Primary Peripheral Blood Mononuclear Cells Infected with Human Immunodeficiency Virus (HIV-1),” PLoS One, Vol. 6, No. 7, 2011, Article ID: e22730. doi:10.1371/journal.pone.0022730
[117] Z. Klase, L. Houzet and K.-T. Jeang, “Replication Competent HIV-1 Viruses that Express Intragenomic microRNA Reveal Discrete RNA-Interference Mechanisms that Affect Viral Replication,” Cell and Bioscience, Vol. 1, No. 1, 2011, p. 38. doi:10.1186/2045-3701-1-38
[118] N. H. Gana, T. Onuki, A. F. B. Victoriano and T. Okamoto, “MicroRNAs in HIV-1 Infection: An Integration of Viral and Cellular Interaction at the Genomic Level,” Frontiers in Microbiology, Vol. 3, 2012, p. 306. doi:10.3389/fmicb.2012.00306
[119] K. Chiang, H. Liu and A. P. Rice, “MiR-132 Enhaces HIV-1 Replication,” Virology, Vol. 438, No. 1, 2013, pp. 1-4.
[120] V. Soriano, P. Barreiro, L. Martin-Carbonero, C. Castellares, A. Ruiz-Sancho, P. Labarga, B. Ramos and J. Gonzalez-Lahoz, “Treatment of Chronic Hepatitis B or C in HIV-Infected Patients with Dual Viral Hepatitis,” The Journal of Infectious Diseases, Vol. 195, No. 8, 2007, pp. 1181-1183. doi:10.1086/512679
[121] C. Esau, S. Davis, S. F. Murray, X. X. Yu, S. K. Pandey, M. Pear, L. Watts, S. L. Booten, M. Graham, R. McKay, A. Subramaniam, S. Propp, B. A. Lollo, S. Freier, C. F. Bennett, S. Bhanot and B. P. Monia, “MiR-122 Regulation of Lipid Metabolism Revealed by in Vivo Antisense Targeting,” Cell Metabolism, Vol. 3, No. 2, 2006, pp. 87-98.
[122] D. Gatfield, G. Le Martelot, C. E. Vejnar, D. Gerlach, O. Schaad, F. Fleury-Olela, A.-L. Ruskeepaa, M. Oresic, C. C. Esau, E. M. Zdobnov and U. Schibler, “Intergration of microRNA miR-122 in Hepatic Circadian Gene Expression,” Genes and Development, Vol. 23, No. 11, 2012, pp. 1313-1326. doi:10.1101/gad.1781009
[123] S.-H. Hsu, B. Wang, J. Kota, J. Yu, S. Costinean, H. Kutay, L. Yu, S. Bai, K. La Perle, R. R. Chivukula, H. Mao, M. Wei, K. R. Clark, J. R. Mendell, M. A. Caliguri, S. T. Jacob, J. T. Mendell and K. Ghoshal, “Essential Metabolic, Anti-Inflammatory, and Anti-Tumorigenic Functions of miR-122 in Liver,” The Journal of Clinical Investigation, Vol. 122, No. 8, 2012, pp. 2871-2883. doi:10.1172/JCI63539
[124] C. L. Jopling, M. Yi, A. M. Lancaster, S. M. Lemon and P. Sarnow, “Modulation of Hepatitis C Virus RNA Abundance by a Liver-Specific microRNA,” Science, Vol. 309, No. 5740, 2005, pp. 1577-1581. doi:10.1126/science.1113329
[125] C. L. Jopling, “Regulation of Hepatitis C Virus by microRNA-122,” Biochemical Society Transactions, Vol. 36, No. 6, 2008, pp. 1220-1223. doi:10.1042/BST0361220
[126] J. I. Henke, D. Goergen, J. Zheng, Y. Song, C. G. Schüttler, C. Fehr, C. Jünemann and M. Niepmann, “MicroRNA-122 Stimulates Translation of Hepatitis C Virus RNA,” The EMBO Journal, Vol. 27, No. 24, 2008, pp. 3300-3310.
[127] K. L. Norman and P. Sarnow, “Modulation of Hepatitis C Virus RNA Abundance and the Isoprenoid Biosynthesis Pathway by microRNA miR-122 Involves Distinct Mechanisms,” Journal of Virology, Vol. 84, No. 1, 2010, pp. 666-670. doi:10.1128/JVI.01156-09
[128] R. A. Villanueva, R. K. Jangra, M. Yi, R. Pyles, N. Bourne and S. M. Lemon, “MiR-122 Does Not Modulate the Elongation Phase of Hepatitis C Virus RNA Synthesis in Isolated Replicase Complexes,” Antiviral Research, Vol. 88, No. 1, 2010, pp. 119-123. doi:10.1016/j.antiviral.2010.07.004
[129] M. Lindow and S. Kauppinen, “Discovering the First microRNA-Target Drug,” The Journal of Cell Biology, Vol. 199, No. 3, 2012, pp. 407-412. doi:10.1083/jcb.201208082
[130] M. Sarasin-Filipowicz, J. Krol, I. Markiewicz, M. H. Heim and W. Filipowicz, “Decreased Levels of microRNA miR-122 in Individuals with Hepatitis C Responding Poorly to Interferon Therapy,” Nature Medicine, Vol. 15, No. 1, 2009, pp. 31-33.
[131] S. Wang, L. Qiu, X. Yan, W. Jin, Y. Wang, L. Chen, E. Wu, X. Ye, G. F. Gao, F. Wang, Y. Chen, Z. Duan and S. Meng, “Loss of microRNA 122 Expression in Patients with Hepatitis B Enhances Hepatitis B Virus Replication through Cyclin G1-Modulated P53 Activity,” Hepatology, Vol. 55, No. 3, 2012, pp. 730-741. doi:10.1002/hep.24809
[132] Z. Y. Li, Y. Xi, W. N. Zhu, C. Zeng, Z. Q. Zhang, Z. C. Guo, D. L. Hao, G. Liu, L. Feng, H. Z. Chen, F. Chen, X. Lv, D. P. Liu and C. C. Liang, “Positive Regulation of Hepatic miR-122 Expression by HNF-4 Alpha,” Journal of Hepatology, Vol. 55, No. 3, 2011, pp. 602-611. doi:10.1016/j.jhep.2010.12.023
[133] R. Triboulet, B. Mari, Y. L. Lin, C. Chable-Bessia, Y. Bennasser, K. Lebrigand, B. Cardinaud, T. Maurin, P. Barbry, V. Baillat, J. Reynes, P. Corbeau, K. T. Jeang and M. Benkirane, “Suppression of microRNA-Silencing Pathway by HIV-1 during Virus Replication,” Science, Vol. 315, No. 5818, 2007, pp. 1579-1582. doi:10.1126/science.1136319
[134] A. Khokhar, S. Noorali, M. Sheraz, K. Mahalingham, D. G. Pace, M. R. Khanani and O. Bagasra, “Computational Analysis to Predict Functional Role of hsa-miR-3065-3p as an Antiviral Therapeutic Agent for Treatment of Triple Infections: HCV, HIV-1, and HBV,” The Libyan Journal of Medicine, Vol. 7, 2012, p. 19774. doi:10.3402/ljm.v7i0.19774
[135] P. Garred, “Chemokine-Receptor Polymorphisms: Clarity or Confusion for HIV-1 Prognosis?” The Lancet, Vol. 351, No. 9095, 1998, pp. 2-3.
[136] Y. Huang, W. A. Paxton, S. M. Wolinsky, A. U. Neumann, L. Zhang, T. He, S. Kang, D. Ceradini, Z. Jin, K. Yazdanbakhsh, K. Kunstman, D. Erickson, E. Dragon, N. R. Landau, J. Phair, D. D. Ho and R. A. Koup, “The Role of a Mutant CCR5 Allele in HIV-1 Transmission and Disease Progression,” Nature Medicine, Vol. 2, No. 11, 1996, pp. 1240-1243. doi:10.1038/nm1196-1240
[137] P. Jungebluth, E. Alici, S. Baiguera, K. Le Blanc, P. Blomberg, B. Bozóky, C. Crowley, O. Einarsson, K. H. Grinnemo, T. Gudbjartsson, S. Le Guyader, G. Henriksson, O. Hermanson, J. E. Juto, B. Leidner, T. Lilja, J. Liska, T. Luedde, V. Lundin, G. Moll, B. Nilsson, C. Roderburg, S. Stromblad, T. Sutlu, A. I. Teixeira, E. Watz, A. Seifalian and P. Macchiarini, “Tracheobronchial Transplantation with a Stem-Cell-Seeded Bioartificial Nanocomposite: A Proof-of-Concept Study,” The Lancet, Vol. 378, No. 9808, 2011, pp. 1997-2004. doi:10.1016/S0140-6736(11)61715-7
[138] D. Ganten, “What is life? On Erwin Schrodinger, His Cat, and the Journal of Molecular Medicine,” Journal of Molecular Medicine, Vol. 85, No. 12, 2007, pp. 1291-1292. doi:10.1007/s00109-007-0288-9
[139] J. T. Trevors and L. Masson, “Quantum Microbiology,” Current Issues in Molecular Biology, Vol. 13, No. 2, 2011, pp. 43-49.
[140] G. P. Berman, G. D. Doolen, R. Mainieri and V. I. Tsifrinovich, “Introduction to Quantum Computers,” World Scientific Pub. Co. Ltd., Singapore City, 1998.
[141] T. Yamamoto, S. Omoto, M. Mizuguchi, H. Mizukami, H. Okuyama, N. Okada, N. K. Saksena, E. A. Brisibe, K. Otake and Y. R. Fujii, “Double-Stranded Nef RNA Interferes with Human Immunodeficiency Virus Type 1 Replication,” Microbiology and Immunology, Vol. 46, No. 11, 2002, pp. 809-817.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.