Share This Article:

Dynamic Simulation and Hemolysis Evaluation of the Regurgitant Flow over a Tilting-Disc Mechanical Heart Valve in Pulsatile Flow

Abstract Full-Text HTML XML Download Download as PDF (Size:1071KB) PP. 160-168
DOI: 10.4236/wjm.2013.33014    3,115 Downloads   5,424 Views   Citations

ABSTRACT

Regurgitation in the heart diastolic phase represents a critical flow condition associated with many heart valve design considerations. The finite volume method, the Low-Reynolds-Number k-ω turbulent model and sliding mesh model are employed to solve and compare the complex flow field and the torque in each case. The end results expected from a cardiovascular CFD analysis are not limited only to the flowfield investigations. More importantly, it needs an evaluation criterion to judge if the design is acceptable as considered from a broader blood cell damage or activation perspective. In this study, blood cell damage index developed based on stress-time empirical rule and Lagrangian particle tracking is introduced to assess the viscous and turbulence-induced stresses effect to the blood cells.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

U. Hsu and P. Lu, "Dynamic Simulation and Hemolysis Evaluation of the Regurgitant Flow over a Tilting-Disc Mechanical Heart Valve in Pulsatile Flow," World Journal of Mechanics, Vol. 3 No. 3, 2013, pp. 160-168. doi: 10.4236/wjm.2013.33014.

References

[1] G. J. Cheon and K. B. Chandran, “Dynamic Behavior Analysis of Mechanical Monoleaflet Heart Valve Pros theses in the Opening Phase,” Journal of Biomechanical Engineering, Vol. 115, No. 4A, 1993, pp. 389-395. doi:10.1115/1.2895502
[2] V. Kini, C. Bachmann, A. Fontaine, S. Deutsch and J. M. Tarbell, “Flow Visualization in Mechanical Heart Valves: Occluder Rebound and Cavitation Potential,” Annals of Biomedical Engineering, Vol. 28, No. 4, 2000, pp. 431-441. doi:10.1114/1.281
[3] D. Bluestein, E. Rambod and M. Gharib, “Vortex Shed ding as a Mechanism for Free Emboli Formation in Mechanical Heart Valves,” Journal of Biomechanical Engineering, Vol. 122, No. 2, 2000, pp. 125-134. doi:10.1115/1.429634
[4] L. F. Hiratzke, N. T. Kouchoukos, G. L. Grunkemeier, D. C. Miller, H. E. Scully and A. S. Wechlser, “Outlet Strut Fracture of the Bjork-Shiley 60° Convexo-Concave Valve: Current Information and Recommendations for Patient Care,” Journal of the American College of Cardiology, Vol. 11, No. 5, 1998, pp. 1130-1137.
[5] T. A. Odell, J. Durandt, D. M. Shama and S. Vythilingum, “Spontaneous Embolization of a St. Jude Prosthetic Mitral Valve Leaflet,” Annals of Thoracic Surgery, Vol. 39, No. 6, 1985, pp. 569-572. doi:10.1016/S0003-4975(10)62003-6
[6] A. A. Mikhail, R. Ellis and S. Johnson, “Eighteen-Year Evolution from the Lillehei-Kaster Valve to the Omni Design,” Annals of Thoracic Surgery, Vol. 48, No. 3, 1989, pp. 561-564. doi:10.1016/0003-4975(89)90641-3
[7] C. W. Lillehei, A. Nakib, R. L. Kaster, B. R. Kalke and J. R. Rees, “The Origin and Development of Three New Mechanical Valve Designs: Thoroidal Disc, Pivoting Disc, and Rigid Bileaflet Cardiac Prostheses,” Annals of Thoracic Surgery, Vol. 48, No. 3, 1989, pp. S35-S37. doi:10.1016/0003-4975(89)90630-9
[8] R. Paul, J. Apel, S. Klaus, F. Schügner, P. Schwindke and H. Reul, “Shear Stress Related Blood Damage in Laminar Couette Flow,” Artificial Organs, Vol. 27, No. 6, 2003, pp. 517-529. doi:10.1046/j.1525-1594.2003.07103.x
[9] M. Giersiepen, L. J. Wurzinger, R. Opitz and H. Reul, “Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses—In Vitro Comparison of 25 Aortic Valves,” The International Journal of Artificial Organs, Vol. 13, No. 5, 1990, pp. 300-306.
[10] L. J. Wurzinger, R. Opitz and H. Eckstein, “Mechanical Bloodtrauma: An Overview,” Angeiologie, Vol. 38, No. 3, 1986, pp. 81-97.
[11] A. P. Yoganathan, Z. He and S. C. Jones, “Fluid Mechanics of Heart Valve,” Annual Review of Biomedical Engineering, Vol. 6, 2004, pp. 331-362. doi:10.1146/annurev.bioeng.6.040803.140111
[12] T. K. Hung and G. B. Schuessler, “Computational Analysis as an Aid to the Design of Heart Valves,” Chemical Engineering Progress Symposium Series, Vol. 10, No. 9, 1971, pp. 8-17.
[13] A. D. Au and H. S. Greenfield, “Computer Graphics Analysis of Stresses in Blood Flow through a Prosthetic Heart Valve,” Computers in Biology and Medicine, Vol. 4, No. 3-4, 1975, pp. 279-291. doi:10.1016/0010-4825(75)90039-6
[14] C. S. Peskin, “Flow Patterns around Heart Valves: A Numerical Method,” Journal of Computational Physics, Vol. 10, No. 2, 1972, pp. 252-271. doi:10.1016/0021-9991(72)90065-4
[15] J. de Hart, G. W. M. Peters, P. J. G. Schreurs and F. P. T. Baaijens, “A Two-Dimensional Fluid-Structure Interaction Model of the Aortic Value,” Journal of Biomechanics, Vol. 33, No. 9, 2000, pp. 1079-1088. doi:10.1016/S0021-9290(00)00068-3
[16] M. J. King, T. David and J. Fisher, “Three-Dimensional Study of the Effect of Two Leaflet Opening Angles on the Time-Dependent Flow Througha Bileaflet Mechanical Heart Valve,” Medical Engineering & Physics, Vol. 19, No. 5, 1997, pp. 235-241. doi:10.1016/S1350-4533(96)00066-5
[17] C. S. Peskin and D. M. McQueen, “Modeling Prosthetic Heart Valves for Numerical Analysis of Blood Flow through the Heart,” Journal of Computational Physics, Vol. 37, No. 1, 1980, pp. 113-132. doi:10.1016/0021-9991(80)90007-8
[18] M. Vinokur, “An Analysis of Finite-Difference and Finite-Volume Formulations of Conservation Laws,” Journal of Computational Physics, Vol. 81, No. 1, 1989, pp. 1-52. doi:10.1016/0021-9991(89)90063-6
[19] S. V. Patankar, “Numerical Heat Transfer and Fluid Flow,” Hemisphere, Ch. 6, 1980.
[20] C. Kleinstreuer and Z. Zhang, “Laminar-to-Turbulent Fluid-Particle Flows in Human Airway Model,” International Journal of Multiphase Flow, Vol. 29, No. 2, 2003, pp. 271-289. doi:10.1016/S0301-9322(02)00131-3
[21] H. L. Leo, H. Simon, J. Carberry, S. C. Lee and A. Yoga Nathan, “A Comparison of Flow Field Structures of Two Tri-Leaflet Polymeric Heart Valves,” Annals of Biomedical Engineering, Vol. 33, No. 4, 2005, pp. 429-443. doi:10.1007/s10439-005-2498-z
[22] M. Grigioni, C. Daniele and U. Morbiducci, et al., “The Power-Law Mathematical Model for Blood Damage Prediction: Analytical Developments and Physical Inconsistencies,” Artificial Organs, Vol. 28, No. 5, 2004, pp. 467-475. doi:10.1111/j.1525-1594.2004.00015.x
[23] D. F. Su and C. Y. Miao, “Blood Pressure Variability and Organ Damage,” Clinical and Experimental Pharmacology and Physiology, Vol. 28, No. 9, 2001, pp. 709-715. doi:10.1046/j.1440-1681.2001.03508.x
[24] R. Paul, J. Apel, S. Klaus, F. Schagner, P. Schwindke and H. Reul, “Shear Stress Related Blood Damage in Laminar Couette Flow,” Artificial Organs, Vol. 27, No. 6, 2003, pp. 517-529. doi:10.1046/j.1525-1594.2003.07103.x
[25] D. Arora, M. Behr and M. Pasquali, “A Tensor-Based Measure for Estimating Blood Damage,” Artificial Organs, Vol. 28, No. 11, 2004, pp. 1002-1015. doi:10.1111/j.1525-1594.2004.00072.x

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.