Share This Article:

Regeneration from a Cell Biological Perspective—Fascinating New Insights and Paradigms

DOI: 10.4236/cellbio.2013.22004    2,286 Downloads   5,466 Views  
Author(s)    Leave a comment

ABSTRACT

Regeneration research is more focused on translational values. However, lying at its very foundation is an understanding of how tissues and organs repair and renew themselves at the cellular level. The past decade has witnessed paradigm changing advances in regenerative biology, many of these stems from novel insights into stemness, pluripotency, cell death and their related intra- and inter-cellular biochemical and molecular processes. Some of these new insights are highlighted in the paragraphs that follow. We now have a much better understanding of how regeneration occurs in lower organisms. We have also discovered tools and means of nuclear reprogramming to generate induced pluripotency and changes in cell fate in mammalian models. With further research, there is reasonable hope that various obstacles of regeneration in humans can be better understood and tackled. As regeneration research enters a new era, CellBio welcomes timely review articles and original papers on the theme of “The Cell Biology of Regeneration”.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

B. Tang, "Regeneration from a Cell Biological Perspective—Fascinating New Insights and Paradigms," CellBio, Vol. 2 No. 2, 2013, pp. 31-34. doi: 10.4236/cellbio.2013.22004.

References

[1] D. E. Wagner, I. E. Wang and P. W. Reddien, “Clonogenic Neoblasts Are Pluripotent Adult Stem Cells That Underlie Planarian Regeneration,” Science, Vol. 332, No. 6031, 2011, pp. 811-816. doi:10.1126/science.1203983
[2] T. C. G. Bosch, F. Anton-Erxleben, G. Hemmrich and K. Khalturin, “The Hydra Polyp: Nothing but an Active Stem Cell Community,” Development, Growth & Differentiation, Vol. 52, No. 1, 2010, pp. 15-25. doi:10.1111/j.1440-169X.2009.01143.x
[3] J. Wittlieb, K. Khalturin, J. U. Lohmann, F. Anton-Erxleben and T. C. G. Bosch, “Transgenic Hydra Allow in Vivo Tracking of Individual Stem Cells during Morphogenesis,” Proceedings of the National Academy of Sciences of USA, Vol. 103, No. 16, 2006, pp. 6208-6211. doi:10.1073/pnas.0510163103
[4] J. I. Morrison, S. Lööf, P. He and A. Simon, “Salamander Limb Regeneration Involves the Activation of a Multipotent Skeletal Muscle Satellite Cell Population,” Journal of Cell Biology, Vol. 172, No. 3, 2006, pp. 433-440. doi:10.1083/jcb.200509011
[5] K. Tamura, S. Ohgo and H. Yokoyama, “Limb Blastema Cell: A Stem Cell for Morphological Regeneration,” Development, Growth & Differentiation, Vol. 52, No. 1, 2010, pp. 89-99. doi:10.1111/j.1440-169X.2009.01144.x
[6] J. A. Lehoczky, B. Robert and C. J. Tabin, “Mouse Digit Tip Regeneration Is Mediated by Fate-Restricted Progenitor Cells,” Proceedings of the National Academy of Sciences of USA, Vol. 108, No. 51, 2011, pp. 20609-20614. doi:10.1073/pnas.1118017108
[7] S. Chera, L. Ghila, K. Dobretz, Y. Wenger, C. Bauer, W. Buzgariu, J. C. Martinou and B. Galliot, “Apoptotic Cells Provide an Unexpected Source of Wnt3 Signaling to Drive Hydra Head Regeneration,” Developmental Cell, Vol. 17, No. 2, 2009, pp. 279-289. doi:10.1016/j.devcel.2009.07.014
[8] H. D. Ryoo, T. Gorenc and H. Steller, “Apoptotic Cells Can Induce Compensatory Cell Proliferation through the JNK and the Wingless Signaling Pathways,” Developmental Cell, Vol. 7, No. 4, 2004, pp. 491-501. doi:10.1016/j.devcel.2004.08.019
[9] A. S. Tseng, D. S. Adams, D. Qiu, P. Koustubhan and M. Levin, “Apoptosis Is Required during Early Stages of Tail Regeneration in Xenopus laevis,” Developmental Biology, Vol. 301, No. 1, 2007, pp. 62-69. doi:10.1016/j.ydbio.2006.10.048
[10] C. Zhao, W. Deng and F. H. Gage, “Mechanisms and Functional Implications of Adult Neurogenesis,” Cell, Vol. 132, No. 4, 2008, pp. 645-660. doi:10.1016/j.cell.2008.01.033
[11] N. Kyritsis, C. Kizil, S. Zocher, V. Kroehne, J. Kaslin, D. Freudenreich, A. Iltzsche and M. Brand. “Acute Inflammation Initiates the Regenerative Response in the Adult Zebrafish Brain,” Science, Vol. 338, No. 6112, 2012, pp. 1353-1356. doi:10.1126/science.1228773
[12] A. Shruster, T. Ben-Zur, E. Melamed and D. Offen, “Wnt Signaling Enhances Neurogenesis and Improves Neurological Function after Focal Ischemic Injury,” PloS One, Vol. 7, No. 7, 2012, e40843. doi:10.1371/journal.pone.0040843
[13] T. Kuwabara, J. Hsieh, A. Muotri, G. Yeo, M. Warashina, D. C. Lie, L. Moore, K. Nakashima, M. Asashima and F. H. Gage, “Wnt-Mediated Activation of NeuroD1 and Retro-Elements during Adult Neurogenesis,” Nature Neuroscience, Vol. 12, No. 9, 2009, pp. 1097-1105. doi:10.1038/nn.2360
[14] N. C. Inestrosa and E. Arenas, “Emerging Roles of Wnts in the Adult Nervous System,” Nature Reviews Neuroscience, Vol. 11, No. 2, 2010, pp. 77-86. doi:10.1038/nrn2755
[15] F. T. Merkle, A. D. Tramontin, J. M. García-Verdugo and A. Alvarez-Buylla, “Radial Glia Give Rise to Adult Neural Stem Cells in the Subventricular Zone,” Proceedings of the National Academy of Sciences of USA, Vol. 101, No. 50, 2004, pp. 17528-17532. doi:10.1073/pnas.0407893101
[16] V. Kroehne, D. Freudenreich, S. Hans, J. Kaslin and M. Brand, “Regeneration of the Adult Zebrafish Brain from Neurogenic Radial Glia-Type Progenitors,” Development, Vol. 138, No. 22, 2011, pp. 4831-4841. doi:10.1242/dev.072587
[17] K. Takahashi and S. Yamanaka, “Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors,” Cell, Vol. 126, No. 4, 2006, pp. 663-676. doi:10.1016/j.cell.2006.07.024
[18] J. M. Polo, E. Anderssen, R. M. Walsh, B. A. Schwarz, C. M. Nefzger, S. M. Lim, M. Borkent, E. Apostolou, S. Alaei, J. Cloutier, O. Bar-Nur, S. Cheloufi, M. Stadtfeld, M. E. Figueroa, D. Robinton, S. Natesan, A. Melnick, J. Zhu, S. Ramaswamy and K. Hochedlinger, “A Molecular Roadmap of Reprogramming Somatic Cells into iPS Cells,” Cell, Vol. 151, No. 7, 2012, pp. 1617-1632. doi:10.1016/j.cell.2012.11.039
[19] T. Vierbuchen, A. Ostermeier, Z. P. Pang, Y. Kokubu, T. C. Südhof and M. Wernig, “Direct Conversion of Fibroblasts to Functional Neurons by Defined Factors,” Nature, Vol. 463, No. 7284, 2010, pp. 1035-1041. doi:10.1038/nature08797
[20] M. Ieda, J. D. Fu, P. Delgado-Olguin, V. Vedantham, Y. Hayashi, B. G. Bruneau and D. Srivastava, “Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors,” Cell, Vol. 142, No. 3, 2010, pp. 375-386. doi:10.1016/j.cell.2010.07.002
[21] A. Margariti, B. Winkler, E. Karamariti, A. Zampetaki, T. N. Tsai, D. Baban, J. Ragoussis, Y. Huang, J. D. J. Han, L. Zeng, Y. Hu and Q. Xu, “Direct Reprogramming of Fibroblasts into Endothelial Cells Capable of Angiogenesis and Reendothelialization in Tissue-Engineered Vessels,” Proceedings of the National Academy of Sciences of USA, Vol. 109, No. 34, 2012, pp. 13793-13798. doi:10.1073/pnas.1205526109
[22] M. Thier, P. Wörsdörfer, Y. B. Lakes, R. Gorris, S. Herms, T. Opitz, D. Seiferling, T. Quandel, P. Hoffmann, M. M. Nöthen, O. Brüstle and F. Edenhofer, “Direct Conversion of Fibroblasts into Stably Expandable Neural Stem Cells,” Cell Stem Cell, Vol. 10, No. 4, 2012, pp. 473-479. doi:10.1016/j.stem.2012.03.003
[23] E. Lujan, S. Chanda, H. Ahlenius, T. C. Südhof and M. Wernig. “Direct Conversion of Mouse Fibroblasts to Self-Renewing, Tripotent Neural Precursor Cells,” Proceedings of the National Academy of Sciences of USA, Vol. 109, No. 7, 2012, pp. 2527-2532. doi:10.1073/pnas.1121003109
[24] K. L. Ring, L. M. Tong, M. E. Balestra, R. Javier, Y. Andrews-Zwilling, G. Li, D. Walker, W. R. Zhang, A. C. Kreitzer and Y. Huang, “Direct Reprogramming of Mouse and Human Fibroblasts into Multipotent Neural Stem Cells with a Single Factor,” Cell Stem Cell, Vol. 11, No. 1, 2012, pp. 100-109. doi:10.1016/j.stem.2012.05.018
[25] E. Szabo, S. Rampalli, R. M. Risueño, A. Schnerch, R. Mitchell, A. Fiebig-Comyn, M. Levadoux-Martin and M. Bhatia, “Direct Conversion of Human Fibroblasts to multilineage Blood Progenitors,” Nature, Vol. 468, No. 7323, 2010, pp. 521-526. doi:10.1038/nature09591

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.