Share This Article:

Influence of Treatment of Jatropha curcas L. Leachates and Potassium on Growth and Phytochemical Constituents of Wheat (Triticum aestivum L.)

Abstract Full-Text HTML Download Download as PDF (Size:302KB) PP. 1134-1150
DOI: 10.4236/ajps.2013.45140    4,042 Downloads   5,914 Views   Citations


Jatropha curcas L. commonly known as physic nut is an exotic species that shows invasive characters. Plantation of Jatropha species is being undertaken at a large scale for biodiesel production. The plants defoliate their leaves twice a year and have been shown to possess certain antinutritional factors. Seeds of Jatropha are removed from mature dried fruits for oil extraction and ovary walls are discarded. For the present experiments leachates from sun dried leaves and ovary walls of Jatropha curcas L. were used for analyzing their possible allelopathic effects on the growth of wheat (Triticum aestivum L. cultivar, MP-4010). Leachate treatments result in slight decrease in growth in terms of plant height, leaf area, biomass, spike length and 100 seed weight of wheat and increase in total phenols, tannins, phytic acid and free amino acids. Results suggest that the leachates of leaf and ovary wall of Jatropha curcas are slightly inhibitory, however the impact does not last long. Nevertheless, continuous plantation may lead to accumulation of damaging constituents which reflects the need for further analysis and experimentation.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Nisha Singh Tomar and R. M. Agarwal, "Influence of Treatment of Jatropha curcas L. Leachates and Potassium on Growth and Phytochemical Constituents of Wheat (Triticum aestivum L.)," American Journal of Plant Sciences, Vol. 4 No. 5, 2013, pp. 1134-1150. doi: 10.4236/ajps.2013.45140.


[1] E. Munch, and J. Kiefer, “Purging Nut (Jatropha curcas L.). Multi-Use Plant as a Source of Fuel in the Future,” Schriftenreihe der GTZ 209, 1989, pp. 1-32
[2] J. Heller, “Physic Nut Jatropha curcas L. Promoting the Conservation and Use of Underutilized and Neglected Crops,” Institute of Plant Genetics and Crop Plant Research, Gatersleben: Inter. Plant Gene. Res. Instit, Rome, 1996, p. 66.
[3] R. K. Devappa, H. P. S. Makkar and K. Becker, “Jatropha Toxicity: A Review,” Journal of Toxicology and Environmental Health, Part B, Vol. 13, No. 6, 2010, pp. 476- 507.
[4] F. Hussain and N. Abidi, “Allelopathy Exhibited by Imperata cylindrical,” Pakistan Journal of Botany, Vol. 23, 1991, pp. 15-25
[5] C. Swaminathan, R. S. Vinayrai and K. K. Suresh, “Allelopathic Proctivities of Acacianilotica,” Journal of Tropical Forest Science, Vol. 2, No. 1, 1989, pp. 56-60.
[6] Inderjit, “Plant Phenolics in Allelopathy,” The Botanical Review, Vol. 62, No. 2, 1996, pp. 186-202. doi:10.1007/BF02857921
[7] N. E. Balke, “Effects of Allelochemicals on Mineral Uptake and Associated Physiological Processes,” ACS Symposium Series, Vol. 286, 1985, pp. 161-178. doi:10.1021/bk-1985-0268.ch011
[8] F. A. Einhellig, “Interactions among Allelochemicals and Other Stress Factors of the Plant Environment,” In: G. R. Waller, Ed., Allelochemicals: Role of Agriculture and Forestry, ACS Symposium Series, Vol. 330, American Chemical Society, Washington DC, 1987, pp. 343-357. doi:10.1021/bk-1987-0330.ch032
[9] A. N. Lahiri, “Interaction of Water Stress and Mineral Nutrition on Growth and Yield,” In: N. C. Turner and P. J. Cramer, Eds., Adaptation of Plants to Water and High Temperature Stress, John Wiley, New York, 1980, pp. 341-352.
[10] H. Marschner, “Mineral Nutrition of Higher Plants,” 2nd Edition, Academic Press, London, 1995, pp. 224-312.
[11] Z. Q. Zhao, Y. G. Zhu, H. Y. Li and F. A. Smith, “Effects of Forms and Rates of Potassium Fertilizers on Cadmium Uptake in Two Cultivars of Spring Wheat (Triticum aestivum L),” Environment International, Vol. 29, No. 7, 2003, pp. 973-978. doi:10.1016/S0160-4120(03)00081-3
[12] J. C. Wang, Y. Wu, Q. Wang, Y. L. Peng, K. W. Par, P. Luo and N. Wu, “Allelopathic Effects of Jatropha curcas on marigold (Tagetes erecta L.),” Allelopathy Journal, Vol. 24, No. 1, 2009, pp. 123-130.
[13] H. E. Cheng-Zhong, H. E. Zhong ling, L. I. Han-Feng and Dan Xu Hui, “Allelopathic Effect of Water Extracts from Leaves of Jatropha curcas on Its Seed Germination,” Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, 2009.
[14] S. Abugre and S. J. Q. Sam, “Evaluating the Allelopathic Effect of Jatropha curcas Aqueous Extract on Germination, Radicle and Plumule Length of Crop,” International Journal of Agriculture and Biology, Vol. 12, 2010, pp. 769-772.
[15] J. Shahane and A. M. Mungikar, “A Simple Method for Assessing Leaf Area in Lucerne,” Indian Journal of Botany, Vol. 7, 1984, pp. 135-137.
[16] C. P. Malik and M. B. Singh, “Plant Enzymology and Histo Enzymology,” Kalyani Publishers, New Delhi, 1980, p. 286.
[17] T. Swain and W. E. Hills, “The Phenolic Constituents of Prunus domestica. 1. The Quantitative Analysis of Phenolic Constituent,” Journal of the Science of Food and Agriculture, Vol. 10, No. 1, 1959, pp. 63-68. doi:10.1002/jsfa.2740100110
[18] S. Sadasivam and A. Manickam, “Biochemical Methods,” 2nd Edition, New Age International (P) Limited Publishers, New Delhi, 2004,
[19] J. R. Wilcox, G. S. Premchandra, K. A. Young and V. Raboy, “Isolation of High Seed Inorganic P, Low-Phytate Soybean Mutants,” Crop Science, Vol. 40, No. 4, 2000, pp. 1601-1605. doi:10.2135/cropsci2000.4061601x
[20] J. Fong, F. L. Schaffer and P. K. Kirk, “The Ultramicrodetermination of Glycogen in Liver. A Comparison of the Anthrone and Reducing-Sugar Methods,” Archives of Biochemistry and Biophysics, Vol. 45, No. 2, 1953, pp. 319-326. doi:10.1016/S0003-9861(53)80009-3
[21] V. K. Jain and K. N. Guruprasad, “Effect of Chlorocholin Chloride and Gibberellic Acid on the Anthocyanin Synthesis in Radish Seedlings,” Physiologia Plantarum, Vol. 75, No. 2, 1989, pp. 233-236. doi:10.1111/j.1399-3054.1989.tb06174.x
[22] H. S. Tiwari, “Impact of Varying Potassium Doses and Suboptimal Water Supply on Growth of Rice (Oryza sativa L.),” Ph.D. Thesis, Jiwaji University, Gwalior, 1996.
[23] A. Eaton, L. Clesceri, L. Rice and A. Greenberg, “Standard Method for the Experimentation of Water and Waste Water,” 21st Edition, American Republic Health Association and Water Environmental Federation, Washington, 2005.
[24] M. L. Jackson, “Soil Chemical Analysis,” Prentice Hall of India Pvt. Ltd., New Delhi, 1973.
[25] V. Iswaran and S. Marwaha, “A Modified Rapid Kjeldahl Method for Determination of Total Nitrogen in Agricultural and Biological Materials,” Geobios, Vol. 7, No. 6, 1980.
[26] F. A. Einhellig, M. S. Muth and M. K Schon, “Effects of Allelochemicals on Plant-Water Relationships,” ACS Symposium Series, Vol. 268, 1985, pp. 170-195.
[27] R. Khanna-Chopra, G. S. Chaturvedi, P. K. Aggarwal and S. K. Sinha, “Effect of Potassium on Growth and Nitrate Reductase during Water Stress and Recovery in Maize,” Physiologia Plantarum, Vol. 49, No. 4, 1980, pp. 495- 500. doi:10.1111/j.1399-3054.1980.tb03340.x
[28] R. M. Agarwal, S. Nisha Tomar, K. S. Jatav and G. L. Sharma, “Potassium-Induced Changes in Flowering Plants,” In: Y. Vimala, Ed., Flower: Retrospect and Prospect, SR Scientific Publication, Delhi, 2009, pp. 158-186.
[29] K. S. Jatav, R. M. Agarwal, R. P. Singh and M. Shrivastava, “Growth and Yield Responses of Wheat (Triticum aestivum L) to Suboptimal Water Supply and Different Potassium Doses,” Journal of Functional and Environmental Botany, Vol. 2, No. 1, 2012, pp. 39-51. doi:10.5958/j.2231-1742.2.1.005
[30] R. Velazhahan and R. Rambadran, “Influence of potassium Fertilization on Sheath Rot Incidence and Phenolic Contents of Rice,” The Madras Agricultural Journal, Vol. 70, 1992, pp. 294-298.
[31] C. V. Bhasker, G. Ramarao and K. B. Reddy, “Effect of Nitrogen and Potassium Nutrition on Sheath Rot Incidence and Phenolcontent in Rice,” Indian Journal of Plant Physiology, Vol. 6, No. 3, 2001, pp. 254 -257.
[32] S. K. Biswas, K. D. Srivastava, R. Agarwal, S. Praveen and D. V. Singh, “Biochemical Changes in Wheat Induced by Chaetomium globosum against Spot Blotch Pathogen,” Indian Phytopathology, Vol. 54, 2003, pp. 374-379.
[33] P. M. Dey and J. B. Harborne, “Plant Biochemistry,” Academic Press, A Harcourt Science and Technology Company, 2000.
[34] K. Mengel, M. Secer and K. Koch, “Potassium Effect on Protein Formation and Amino Acid Turnover in Developing Wheat Grain,” Agronomy Journal, Vol. 73, No. 1, 1981, pp. 74-78. doi:10.2134/agronj1981.00021962007300010018x
[35] M. M. Jones, C. B. Osmond and N. C. Turner, “Accumulation of Solutes in Leaves of Sorghum and Sunflower in Response to Water Deficit,” Australian Journal of Plant Physiology, Vol. 7, No. 2, 1980, pp. 193-205. doi:10.1071/PP9800193
[36] K. K. Uprety and G. S. R. Murti, “Water Stress Induced Changes in Common Polyamines and Abscisic Acid in French Bean,” Indian Journal of Plant Physiology, Vol. 10, No. 2, 2005, pp. 145-150.
[37] I. Dakshini and K. M. M. Dakshini, “Interference Potential of Plachea lanceolata (Asteraceae): Growth and Physiological Responses of Asparagus Bean, Vigna unguiculata var. sesquipedalis,” American Journal of Botany, Vol. 79, No. 9, 1992, pp. 977-981. doi:10.2307/2444906
[38] S. Handa, R. A. Bressan, A. K. Handa, N. C. Carpita and P. M. Hasegawa, “Solutes Contribute to Osmotic Adjustment in Cultured Plant Cells Adapted to Water Stress,” Plant Physiology, Vol. 73, No. 3, 1983, pp. 834-843. doi:10.1104/pp.73.3.834
[39] S. P. Dinesh Kumar, V. R. Sashidhar, T. G. Prasad, M. Udaya Kumar and A. Seetharam, “Solute Accumulation, Solute Potential, Germinability and Seedling Vigour of Seeds of Finger Millet (Eleusian coracona Gaertin) Raised under Rainfed Condition and under Irrigation,” Plant, Cell & Environment, Vol. 10, No. 8, 1987, pp. 661-665. doi:10.1111/j.1365-3040.1987.tb01849.x
[40] G. S. Premchandra, H. Saneoka, K. Fujita and S. Ogata, “Leaf Water Relations, Osmotic Adjustment, Cell Membrane Stability, Epicuticular Wax Load and Growth as Affected by Increasing Water Deficit in Sorghum,” Journal of Experimental Botany, Vol. 43, No. 12, 1992, pp. 1569-1567. doi:10.1093/jxb/43.12.1569
[41] Rashmi Pandey, R. M. Agarwal, K. Jeevaratnam and G. L. Sharma, “Osmotic Stress Induced Alterations in Rice (Oryza sativa L.) and Recovery,” Plant Growth Regulation, Vol. 42, No. 1, 2004, pp. 79-87. doi:10.1023/B:GROW.0000014893.45112.55
[42] E. E. Chambers and L. G. Holm, “Phosphorus Uptake as Influenced by Associated Plants,” Weeds, Vol. 13, No. 4, 1965, pp. 312-314. doi:10.2307/4040883
[43] C. E. Olmsted and E. L Rice, “Relative Effects of Known Plant Inhibitors on Species from First Two Stages of Old Field Succession,” The Southwestern Naturalist, Vol. 15, No. 2, 1970, pp. 165-173.
[44] M. J. Crawley, “Plant Secondary Metabolism,” In: Plant Ecology, Cambridge University Press, Cambridge, 1997, pp. 132-155.
[45] H. Lambers, F. S. Chaplin and T. L. Pons, “Plant Physiological Ecology,” Springer, Berlin Heidelberg, New York, 1998, pp. 46-60. doi:10.1007/978-1-4757-2855-2
[46] A. D. M. Glass, “Inhibition of Phosphate Uptake in Barley Roots by Hydroxybenzoic Acid,” Phytochemistry, Vol. 14, No. 10, 1975, pp. 2127-2130. doi:10.1016/S0031-9422(00)91083-5
[47] A. B. Hall, U. Blum and R. C. Fites, “Stress Modification of Allelopathy of Helianthus annuus L. Debris on Seedling of Biomass Production of Amaranthus retroflexus L.,” Journal of Chemical Ecology, Vol. 9, No. 8, 1983, pp. 1213-1222. doi:10.1007/BF00982223
[48] L. G. Stowe and A. Osborn, “The Influence of Nitrogen and Phosphorus Levels on the Phytotoxicity of Phenolic Compounds,” Canadian Journal of Botany, Vol. 58, No. 10, 1980, pp. 1149-1153. doi:10.1139/b80-142
[49] R. R. Barkosky and F. A. Einhellig, “Effects of Salicylic Acid on Plant-Water Relationships,” Journal of Chemical Ecology, Vol. 19, No. 2, 1993, pp. 237-247. doi:10.1007/BF00993692
[50] D. Bandoniene, M. Markovic, W. Pfannhauser, P. Venskutonis and D. Gruzdiene, “Detection and Activity Evaluation of Radical Scavavenging Compounds by Using DPPH Free Radical and on Line HPLC-DPPH Methods,” European Food Research and Technology, Vol. 214, No. 2, 2002, pp. 143-294. doi:10.1007/s00217-001-0430-9
[51] B. Tape, M. Sokmen, H. A. Akpulat and A. Sokmen, “Screening of the Antioxidant Potential of Six Salviaspecies from Turkey,” Food Chemistry, Vol. 95, No. 2, 2006, pp. 200- 204. doi:10.1016/j.foodchem.2004.12.031
[52] S. R. Saxena, A. Sharma, A. Batra and S. Rajore, “Isolation and Identification of Flavonoids ‘Vitexin’ from Jatropha curcas L.,” Plant Sciences Research, Vol. 21, 2005, pp. 116-117.
[53] N. Bahman, K. Mohammed and I. Hamidreza, “In Vitro Free Radical Scavenging Activity of Five Salvia Species,” Pakistan Journal of Pharmaceutical Sciences, Vol. 20, 2007, pp. 291-294.
[54] G. Diwani, S. E. Rafie and S. Hawash, “Antioxidant Activity of Extracts Obtained from Residues of Nodes, Leaves, Stem and Root of Egyptian Jatropha curcas,” African Journal of Pharmacy and Pharmacology, Vol. 3, No. 11, 2009, pp. 521-530.
[55] S. Sunderamoorty and D. N. Sen, “Allelopathic Effects of Tephrosia purpurea Pers. L. on Germination and Growth of Some Arid Zone Crops,” Journal of the Indian Botanical Society, Vol. 69, 1990, pp. 251-255.
[56] S. Rejila and N. Vijayakumar, “Allelopathic Effects of Jatropha curcas on Selected Intercropping Plants (Green Chilli and Sesame),” Journal of Phytology, Vol. 3, No.5, 2011, pp. 01-03.
[57] Y., Ma, J. Chun, F. Chen and S. Wang, “Allelopathic Potential of Jatropha curcas,” African Journal of Biotechnology, Vol. 10, No. 56, 2011, pp. 11932-11942.
[58] D. P. Sherchan, Y. B. Thapa, R. J. Khadka and T. P. Tiwari, “Effect of Green Manure on Rice Production,” PAC Occasional Paper-2, Pakhribas Agricultural Centre, Dhankuta, 1989, p. 12.
[59] G. M. Gubitz, M Mittelbach and M. Trabi, “Exploitation of the Tropical Oil Seed Plant Jatropha curcas L.,” Bioresource Technology, Vol. 67, No. 1, 1999, pp. 73-82. doi:10.1016/S0960-8524(99)00069-3
[60] N. K. Sahoo, A. Kumar, S. Sharma and S. N Naik, “Interaction of Jatropha curcas Plantation with Ecosystem,” Proceedings of International Conference on Energy and Environment , 19-21 March 2009.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.