Share This Article:

Plant Long ncRNAs: A New Frontier for Gene Regulatory Control

Abstract Full-Text HTML Download Download as PDF (Size:305KB) PP. 1038-1045
DOI: 10.4236/ajps.2013.45128    5,070 Downloads   8,501 Views   Citations

ABSTRACT

Long non-coding RNA (lncRNA) refers to an over 200 nt functional RNA molecule that will not be translated into protein. Previously thought to be dark matters of the genome, lncRNAs have been gradually recognized as crucial gene regulators. Although tremendous progress has been made in animals and human, the study of lncRNAs in plant is still in its infancy. Here, we reviewed the biogenesis and regulation mechanisms of lncRNAs and summarized the achievements that have been made in plant lncRNA identification and functional characterization. Genome-wide identification has uncovered large amount of lncRNAs in Arabidopsis, Rice, Maize and Wheat, and more information from other plant species will be expected with the aid of deep sequencing technologies. Similar to other species, LncRNA-mediated gene regulation also widely exists in plants, even though only a few functionally characterized examples are available. Up to now, at least four divergent lncRNA-mediated regulation mechanisms have been unraveled, including target mimicry, transcription interference, PRC2 associated histone methylation and DNA methylation. lncRNAs may be involved in the regulation of flowering, male sterility, nutrition metabolism, biotic and abiotic stress response in plants.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Zhang, H. Mujahid, Y. Hou, B. Nallamilli and Z. Peng, "Plant Long ncRNAs: A New Frontier for Gene Regulatory Control," American Journal of Plant Sciences, Vol. 4 No. 5, 2013, pp. 1038-1045. doi: 10.4236/ajps.2013.45128.

References

[1] P. Carninci, et al., “The Transcriptional Landscape of the Mammalian Genome,” Science, Vol. 309, No. 5740, 2005, pp. 1559-1563. doi:10.1126/science.1112014
[2] P. Kapranov, et al., “RNA Maps Reveal New RNA Classes and a Possible Function for Pervasive Transcription,” Science, Vol. 316, No. 5830, 2007, pp. 1484-1488. doi:10.1126/science.1138341
[3] T. R. Mercer, M. E. Dinger and J. S. Mattick, “Long Non-Coding RNAs: Insights into Functions,” Nature Reviews Genetics, Vol. 10, 2009, pp. 155-159. doi:10.1038/nrg2521
[4] K. Yamada, et al., “Empirical Analysis of Transcriptional Activity in the Arabidopsis Genome,” Science, Vol. 302, No. 5646, 2003, pp. 842-846. doi:10.1126/science.1088305
[5] Y. Jia, W. Liu, A. Li, L. Yang and X. Zhan, “Intrinsic Noise in Post-Transcriptional Gene Regulation by Small Non-Coding RNA,” Biophysical Chemistry, Vol. 143, No. 1-2, 2009, pp. 60-69. doi:10.1016/j.bpc.2009.04.001
[6] U. A. Orom, et al., “Long Noncoding RNAs with Enhancer-Like Function in Human Cells,” Cell, Vol. 143, 2010, pp. 46-58. doi:10.1016/j.cell.2010.09.001
[7] G. Dieci, G. Fiorino, M. Castelnuovo, M. Teichmann and A. Pagano, “The Expanding RNA Polymerase III Transcriptome,” Trends in Genetics, Vol. 23, No. 12, 2007, pp. 614- 622. doi:10.1016/j.tig.2007.09.001
[8] R. Louro, T. El-Jundi, H. I. Nakaya, E. M. Reis and S. Verjovski-Almeida, “Conserved Tissue Expression Signatures of Intronic Noncoding RNAs Transcribed from Human and Mouse Loci,” Genomics, Vol. 92, 2008, pp. 18-25. doi:10.1016/j.ygeno.2008.03.013
[9] T. R. Mercer, M. E. Dinger, S. M. Sunkin, M. F. Mehler and J. S. Mattick, “Specific Expression of Long Noncoding RNAs in the Mouse Brain,” Proceedings of the National Academy of Sciences of USA, Vol. 105, No. 2, 2008, pp. 716-721. doi:10.1073/pnas.0706729105
[10] L. Nie, et al., “Long Non-Coding RNAs: Versatile Master Regulators of Gene Expression and Crucial Players in Cancer,” American Journal of Translational Research, Vol. 4, No. 2, 2012, pp. 127-150.
[11] J. Chen, et al., “Over 20% of Human Transcripts Might Form Sense-Antisense Pairs,” Nucleic Acids Research, Vol. 32, No. 16, 2004, pp. 4812-4820. doi:10.1093/nar/gkh818
[12] M. Lapidot and Y. Pilpel, “Genome-Wide Natural Antisense Transcription: Coupling Its Regulation to Its Different Regulatory Mechanisms,” EMBO Report, Vol. 7, 2006, pp. 1216-1222. doi:10.1038/sj.embor.7400857
[13] A. B. Conley and I. K. Jordan, “Epigenetic Regulation of Human Cis-Natural Antisense Transcripts,” Nucleic Acids Research, Vol. 40, No. 4, 2008, pp. 1438-1445. doi:10.1093/nar/gkr1010
[14] S. R. Henz, J. S. Cumbie, K. D. Kasschau, J. U. Lohmann, J. C. Carrington, D. Weigel and M. Schmid, “Distinct Expression Patterns of Natural Antisense Transcripts in Arabidopsis,” Plant Physiology, Vol. 144, No. 3, 2007, pp. 1247-1255. doi:10.1104/pp.107.100396
[15] L. Li, et al., “Global Identification and Characterization of Transcriptionally Active Regions in the Rice Genome,” PLoS One, Vol. 2, No. 3, 2007, e294. doi:10.1371/journal.pone.0000294
[16] J. Ma, D. J. Morrow, J. Fernandes and V. Walbot, “Comparative Profiling of the Sense and Antisense Transcriptome of Maize Lines,” Genome Biology, Vol. 7, 2006, p. R22. doi:10.1186/gb-2006-7-3-r22
[17] Y. Zhang, X. S. Liu, Q. R. Liu and L. Wei, “Genome- Wide in Silico Identification and Analysis of Cis Natural Antisense Transcripts (cis-NATs) in Ten Species,” Nucleic Acids Research, Vol. 34, No. 12, 2006, pp. 3465- 3475. doi:10.1093/nar/gkl473
[18] C. P. Ponting, P. L. Oliver and W. Reik, “Evolution and Functions of Long Noncoding RNAs,” Cell, Vol. 136, No. 4, 2009, pp. 629-641. doi:10.1016/j.cell.2009.02.006
[19] A. Mazo, J. W. Hodgson, S. Petruk, Y. Sedkov and H. W. Brock, “Transcriptional Interference: An Unexpected Layer of Complexity in Gene Regulation,” Journal of Cell Science, Vol. 120, 2007, pp. 2755-2761. doi:10.1242/jcs.007633
[20] K. Hirota, T. Miyoshi, K. Kugou, C. S. Hoffman, T. Shibata and K. Ohta, “Stepwise Chromatin Remodelling by a Cascade of Transcription Initiation of Non-Coding RNAs,” Nature, Vol. 456, No. 7281, 2008, pp. 130-134. doi:10.1038/nature07348
[21] I. Martianov, A. Ramadass, A. Serra Barros, N. Chow and A. Akoulitchev, “Repression of the Human Dihydrofolate Reductase Gene by a Non-Coding Interfering Transcript,” Nature, Vol. 445, 2007, pp. 666-670. doi:10.1038/nature05519
[22] P. D. Mariner, R. D. Walters, C. A. Espinoza, L. F. Drullinger, S. D. Wagner, J. F. Kugel and J. A. Goodrich, “Human Alu RNA Is a Modular Transacting Repressor of mRNA Transcription during Heat Shock,” Molecular Cell, Vol. 29, No. 4, 2008, pp. 499-509. doi:10.1016/j.molcel.2007.12.013
[23] V. T. Nguyen, T. Kiss, A. A. Michels and O. Bensaude, “7SK Small Nuclear RNA Binds to and Inhibits the Activity of CDK9/Cyclin T Complexes,” Nature, Vol. 414, No. 6861, 2001, pp. 322-325. doi:10.1038/35104581
[24] A. T. Willingham, A. P. Orth, S. Batalov, E. C. Peters, B. G. Wen, P. Aza-Blanc, J. B. Hogenesch and P. G. Schultz, “A Strategy for Probing the Function of Noncoding RNAs Finds a Repressor of NFAT,” Science, Vol. 309, No. 5740, 2005, pp. 1570-1573. doi:10.1126/science.1115901
[25] M. Beltran, I. Puig, C. Pena, J. M. Garcia, A. B. Alvarez, R. Pena, F. Bonilla and A. G.de Herreros, “A Natural Antisense Transcript Regulates Zeb2/Sip1 Gene Expression during Snail1-Induced Epithelial-Mesenchymal Transition,” Genes and Development, Vol. 22, 2008, pp. 756- 769. doi:10.1101/gad.455708
[26] D. E. Golden, V. R. Gerbasi and E. J. Sontheimer, “An Inside Job for siRNAs,” Molecular Cell, Vol. 31, No. 3, 2008, pp. 309-312. doi:10.1016/j.molcel.2008.07.008
[27] J. B. Heo and S. Sung, “Vernalization-Mediated Epigenetic Silencing by a Long Intronic Noncoding RNA,” Science, Vol. 331, No. 6013, 2011, pp. 76-79. doi:10.1126/science.1197349
[28] J. L. Rinn, et al., “Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs,” Cell, Vol. 129, No. 7, 2007, pp. 1311- 1323. doi:10.1016/j.cell.2007.05.022
[29] M. C. Tsai, et al., “Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes,” Science, Vol. 329, No. 5992, 2010, pp. 689-693. doi:10.1126/science.1192002
[30] J. Zhao, B. K. Sun, J. A. Erwin, J. J. Song and J. T. Lee, “Polycomb Proteins Targeted by a Short Repeat RNA to the Mouse X Chromosome,” Science, Vol. 322, No. 5902, 2008, pp. 750-756. doi:10.1126/science.1163045
[31] B. Ben Amor, et al., “Novel Long Non-Protein Coding RNAs Involved in Arabidopsis Differentiation and Stress Responses,” Genome Research, Vol. 19, 2009, pp. 57-69. doi:10.1101/gr.080275.108
[32] T. Lu, et al., “Strand-Specific RNA-seq Reveals Widespread Occurrence of Novel Cis-Natural Antisense Transcripts in Rice,” BMC Genomics, Vol. 13, 2012, p. 721. doi:10.1186/1471-2164-13-721
[33] S. Boerner and K. M. McGinnis, “Computational Identification and Functional Predictions of Long Noncoding RNA in Zea Mays,” PLoS One, Vol. 7, No. 8, 2012, e43047. doi:10.1371/journal.pone.0043047
[34] M. Xin, et al., “Identification and Characterization of Wheat Long Non-Protein Coding RNAs Responsive to Powdery Mildew Infection and Heat Stress by Using Microarray Analysis and SBS Sequencing,” BMC Plant Biology, Vol. 11, 2011, p. 61. doi:10.1186/1471-2229-11-61
[35] S. Swiezewski, F. Liu, A. Magusin and C. Dean, “Cold- Induced Silencing by Long Antisense Transcripts of an Arabidopsis Polycomb Target,” Nature, Vol. 462, No. 7274, 2009, pp. 799-802. doi:10.1038/nature08618
[36] J. M. Franco-Zorrilla, et al., “Target Mimicry Provides a New Mechanism for Regulation of Microrna Activity,” Nature Genetics, Vol. 39, No. 8, 2007, pp. 1033-1037. doi:10.1038/ng2079
[37] J. Ding, et al., “A Long Noncoding RNA Regulates Photoperiod-Sensitive Male Sterility, an Essential Component of Hybrid Rice,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 109, No. 7, 2011, pp. 2654-2659. doi:10.1073/pnas.1121374109
[38] J. Ding, J. Shen, H Mao, W. Xie, X. Li and Q. Zhang, “RNA-Directed DNA Methylation Is Involved in Regulating Photoperiod-Sensitive Male Sterility in Rice,” Molecular Plant, Vol. 5, No. 6, 2012, pp. 1210-1216. doi:10.1093/mp/sss095
[39] H. Zhou, et al., “Photoperiod- and Thermo-Sensitive Genic Male Sterility in Rice Are Caused by a Point Mutation in a Novel Noncoding RNA That Produces a Small RNA,” Cell Research, Vol. 22, No. 4, 2012, pp. 649-660. doi:10.1038/cr.2012.28
[40] D. Zhu and X. W. Deng, “A Non-Coding RNA Locus Mediates Environment-Conditioned Male Sterility in Rice,” Cell Research, Vol. 22, No. 5, 2012, pp. 791-792. doi:10.1038/cr.2012.43
[41] M. D. Crespi, E. Jurkevitch, M. Poiret, Y. d’Aubenton- Carafa, G. Petrovics, E. Kondorosi and A. Kondorosi, “Enod40, a Gene Expressed During Nodule Organogenesis, Codes for a Non-Translatable RNA Involved in Plant Growth,” The Embo Journal, Vol. 13, No. 21, 1994, pp. 5099-5112.
[42] W. C. Yang, et al., “Characterization of GmENOD40, A Gene Showing Novel Patterns of Cell-Specific Expression during Soybean Nodule Development,” The Plant Journal, Vol. 3, No. 4, 1993, pp. 573-585. doi:10.1046/j.1365-313X.1993.03040573.x
[43] S. H. Burleigh and M. J. Harrison, “A Novel Gene Whose Expression in Medicago Truncatula Roots Is Suppressed in Response to Colonization by Vesicular-Arbuscular Mycorrhizal (VAM) Fungi and to Phosphate Nutrition,” Plant Molecular Biology, Vol. 34, No. 2, 1997, pp. 199-208. doi:10.1023/A:1005841119665
[44] C. Liu, U. S. Muchhal and K. G. Raghothama, “Differential Expression of TPS11, a Phosphate Starvation- Induced Gene in Tomato,” Plant Molecular Biology, Vol. 33, No. 5, 1997, pp. 867-874. doi:10.1023/A:1005729309569
[45] J. Wasaki, R. Yonetani, T. Shinano, M. Kai and M. Osaki, “Expression of The OsPI1 Gene, Cloned from Rice Roots Using cDNA Microarray, Rapidly Responds to Phosphorus Status,” New Phytologist, Vol. 158, No. 2, 2003, pp. 239-248. doi:10.1046/j.1469-8137.2003.00748.x
[46] A. He, et al., “Polycomb Repressive Complex 2 Regulates Normal Development of The Mouse Heart,” Circulation Research, Vol. 110, No. 3, 2009, pp. 406-415. doi:10.1161/CIRCRESAHA.111.252205
[47] B. R Nallamilli, J. Zhang, H. Mujahid, B. M. Malone, S. M. Bridges and Z. Peng, “Polycomb Group Gene OsFIE2 Regulates Rice (Oryza sativa) Seed Development and Grain Filling via a Mechanism Distinct from Arabidopsis,” PLoS Genetics, Vol. 9, No. 3, 2013, Article ID: e1003322. doi:10.1371/journal.pgen.1003322
[48] A. M. Khalil, et al., “Many Human Large Intergenic Noncoding RNAs Associate with Chromatin-Modifying Complexes and Affect Gene Expression,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 106, No. 28, 2009, pp. 11667-11672. doi:10.1073/pnas.0904715106
[49] J. Zhao, et al., “Genome-Wide Identification of Polycomb- Associated RNAs by RIP-seq,” Molecular Cell, Vol. 40, No. 6, 2010, pp. 939-953. doi:10.1016/j.molcel.2010.12.011
[50] C. Chu, K. Qu, F. L. Zhong, S. E. Artandi and H. Y. Chang, “Genomic Maps of Long Noncoding RNA Occupancy Reveal Principles of RNA-Chromatin Interactions,” Molecular Cell, Vol. 44, No. 4, 2011, pp. 667-678. doi:10.1016/j.molcel.2011.08.027
[51] M. E. Dinger, K. C. Pang, T. R. Mercer and J. S.Mattick, “Differentiating Protein-Coding and Noncoding RNA: Challenges and Ambiguities,” PLoS Computational Biology, Vol. 4, No. 11, 2008, Article ID: e1000176. doi:10.1371/journal.pcbi.1000176

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.