Calculation of compact amplitude-integrated EEG tracing and upper and lower margins using raw EEG data

Abstract

Amplitude-integrated EEG (aEEG) is a popular method for monitoring cerebral function. Although various commercial aEEG recorders have been produced, a detailed aEEG algorithm currently is not available. The upper and lower margins in the aEEG tracing are the discriminating features for data inspection and tracing classification. However, most aEEG devices require that these margins be measured semi-subjectively. This paper proposes a step-by-step signal-processing method to calculate a compact aEEG tracing and the upper/lower margin using raw EEG data. The high accuracy of the algorithm was verified by comparison with a recognized commercial aEEG device based on a representative testing dataset composed of 72 aEEG data. The introduced digital algorithm achieved compact aEEG tracing with a small data size. Moreover, the algorithm precisely represented the upper and lower margins in the tracing for objective data interpretation. The described method should facilitate aEEG signal processing and further establish the clinical and experimental application of aEEG methods.

Share and Cite:

Zhang, D. and Ding, H. (2013) Calculation of compact amplitude-integrated EEG tracing and upper and lower margins using raw EEG data. Health, 5, 885-891. doi: 10.4236/health.2013.55116.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Maynard, D., Prior, P.F. and Scott, D.F. (1969) Device for continuous monitoring of cerebral activity in resuscitated patients. British Medical Journal, 4, 545-546. doi:10.1136/bmj.4.5682.545-a
[2] Hellström-Westas, L., Rosén, I., de Vries, L.S. and Greisen, G. (2006) Amplitude-integrated EEG classification and interpretation in preterm and term infants. NeoReviews, 7, e76-e86. doi:10.1542/neo.7-2-e76
[3] Al Naqeeb, N., Edwards, A.D., Cowan, F.M. and Azzopardi, D. (1999) Assessment of neonatal encephalopathy by amplitude-integrated electroencephalography. Pediatrics, 103, 1263-1271. doi:10.1542/peds.103.6.1263
[4] Toet, M.C., Hellström-Westas, L., Groenendaal, F., Eken, P. and de Vries, L.S. (1999) Amplitude integrated EEG 3 and 6 hours after birth in full term neonates with hypoxic-ischaemic encephalopathy. Archives of Disease in Childhood—Fetal and Neonatal Edition, 81, F19-F23. doi:10.1136/fn.81.1.F19
[5] Bowen, J.R., Paradisis, M. and Shah, D. (2010) Decreased aEEG continuity and baseline variability in the first 48 hours of life associated with poor short-term outcome in neonates born before 29 weeks gestation. Pediatric Research, 67, 538-544. doi:10.1203/PDR.0b013e3181d4ecda
[6] Kuint, J., Turgeman, A., Torjman, A. and Maayan-Metzger, A. (2007) Characteristics of amplitude-integrated electroencephalogram in premature infants. Journal of Child Neurology, 22, 277-281. doi:10.1177/0883073807299860
[7] Toet, M.C. and Lemmers, P.M. (2009) Brain monitoring in neonates. Early Human Development, 85, 77-84. doi:10.1016/j.earlhumdev.2008.11.007
[8] Burdjalov, V.F., Baumgart, S. and Spitzer, A.R. (2003) Cerebral function monitoring: A new scoring system for the evaluation of brain maturation in neonates. Pediatrics, 112, 855-861. doi:10.1542/peds.112.4.855
[9] Horan, M., Azzopardi, D., Edwards, A.D., Firmin, R.K. and Field, D. (2007) Lack of influence of mild hypothermia on amplitude integrated-electroencephalography in neonates receiving extracorporeal membrane oxygenation. Early Human Development, 83, 69-75. doi:10.1016/j.earlhumdev.2006.05.004
[10] Olischar, M., Klebermass, K., Kuhle, S., Hulek, M., Kohlhauser, C., Rücklinger, E., Pollak, A. and Weninger, M. (2004) Reference values for amplitude-integrated electroencephalographic activity in preterm infants younger than 30 weeks’ gestational age. Pediatrics, 113, e61-e66. doi:10.1542/peds.113.1.e61
[11] Shalak, L.F., Laptook, A.R., Velaphi, S.C. and Perlman, J. M. (2003) Amplitude-integrated electroencephalography coupled with an early neurologic examination enhances prediction of term infants at risk for persistent encephalopathy. Pediatrics, 111, 351-357. doi:10.1542/peds.111.2.351
[12] Shany, E., Goldstein, E., Khvatskin, S., Friger, M.D., Heiman, N., Goldstein, M., Karplus, M. and Galil, A. (2006) Predictive value of amplitude-integrated electroencephalography pattern and voltage in asphyxiated term infants. Pediatric Neurology, 35, 335-342. doi:10.1016/j.pediatrneurol.2006.06.007
[13] Thornberg, E. and Thiringer, K. (1990) Normal pattern of the cerebral function monitor trace in term and preterm neonates. Acta Paediatrica Scandinavica, 79, 20-25. doi:10.1111/j.1651-2227.1990.tb11324.x
[14] Maynard, D.E. (1969) A note on the nature of the non-rhythmic components of the electroencephalogram. Activitas Nervosa Superior, 11, 238-241.
[15] Prior, P.F. and Maynard, D.E. (1986) Monitoring cerebral function. ELSEVIER, Amsterdam, 91-92.
[16] McClellan, J.H. and Parks, T.W. (2005) A personal history of the Parks-McClellan algorithm. IEEE Signal Process Magazine, 22, 82-86. doi:10.1109/MSP.2005.1406492
[17] Vanhatalo, S., Voipio, J. and Kaila, K. (2005) Full-band EEG (FbEEG): An emerging standard in electroencephalography. Clinical Neurophysiology, 116, 1-8. doi:10.1016/j.clinph.2004.09.015
[18] Hellström-Westas, L., de Vries, L.S. and Rosén, I. (2003) An atlas of amplitude-integrated EEGs in the newborn. The Parthenon Publishing Group, New York, 12-17.
[19] Niemarkt, H.J., Andriessen, P., Peters, C.H., Pasman, J.W., Blanco, C.E., Zimmermann, L.J. and Bambang Oetomo, S. (2010) Quantitative analysis of amplitude-integrated electroencephalogram patterns in stable preterm infants, with normal neurological development at one year. Neonatology, 97, 175-182. doi:10.1159/000252969
[20] Zhang, D., Liu, Y., Hou, X., Zhou, C., Luo, Y., Ye, D. and Ding, H. (2011) Reference values for amplitude-integrated electroencephalogram in infants from preterm to 3.5 months of age. Pediatrics, 127, e1280-e1287. doi:10.1542/peds.2010-2833
[21] Sisman, J., Campbell, D.E. and Brion, L.P. (2005) Amplitude-integrated EEG in preterm infants: Maturation of background pattern and amplitude voltage with postmenstrual age and gestational age. Journal of Perinatology, 25, 391-396. doi:10.1038/sj.jp.7211291
[22] Maynard, D.E. and Jenkinson, J.L. (1984) The cerebral function analysing monitor. Initial clinical experience, application and further development. Anaesthesia, 39, 678- 690. doi:10.1111/j.1365-2044.1984.tb06477.x
[23] Sebel, P.S., Maynard, D.E., Major, E. and Frank, M. (1983) The cerebral function analysing monitor (CFAM). A new microprocessor-based device for the on-line analysis of the EEG and evoked potentials. British Journal of Anaesthesia, 55, 1265-1270. doi:10.1093/bja/55.12.1265
[24] Frank, M., Maynard, D.E., Tsanaclis, L.M., Major, E. and Coutinho, P.E. (1984) Changes in cerebral electrical activity measured by the cerebral function analysing monitor following bolus injections of thiopentone. British Journal of Anaesthesia, 56, 1075-1081. doi:10.1093/bja/56.10.1075
[25] Verma, U.L., Archbald, F., Tejani, N.A. and Handwerker, S.M. (1984) Cerebral function monitor in the neonate. I: Normal patterns. Developmental Medicine & Child Neurology, 26, 154-161. doi:10.1111/j.1469-8749.1984.tb04426.x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.