Share This Article:

The Effect of Ligament Modeling Technique on Knee Joint Kinematics: A Finite Element Study

Abstract Full-Text HTML XML Download Download as PDF (Size:976KB) PP. 91-97
DOI: 10.4236/am.2013.45A011    4,831 Downloads   9,257 Views   Citations


Finite element (FE) analysis has become an increasingly popular technique in the study of human joint biomechanics, as it allows for detailed analysis of the joint/tissue behavior under complex, clinically relevant loading conditions. A wide variety of modeling techniques have been utilized to model knee joint ligaments. However, the effect of a selected constitutive model to simulate the ligaments on knee kinematics remains unclear. The purpose of the current study was to determine the effect of two most common techniques utilized to model knee ligaments on joint kinematics under functional loading conditions. We hypothesized that anatomic representations of the knee ligaments with anisotropic hyperelastic properties will result in more realistic kinematics. A previously developed, extensively validated anatomic FE model of the knee developed from a healthy, young female athlete was used. FE models with 3D anatomic and simplified uniaxial representations of main knee ligaments were used to simulate four functional loading conditions. Model predictions of tibiofemoral joint kinematics were compared to experimental measures. Results demonstrated the ability of the anatomic representation of the knee ligaments (3D geometry along with anisotropic hyperelastic material) in more physiologic prediction of the human knee motion with strong correlation (r 0.9 for all comparisons) and minimum deviation (0.9° RMSE 2.29°) from experimental findings. In contrast, non-physiologic uniaxial elastic representation of the ligaments resulted in lower correlations (r 0.6 for all comparisons) and substantially higher deviation (2.6° RMSE 4.2°) from experimental results. Findings of the current study support our hypothesis and highlight the critical role of soft tissue modeling technique on the resultant FE predicted joint kinematics.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Kiapour, V. Kaul, A. Kiapour, C. Quatman, S. Wordeman, T. Hewett, C. Demetropoulos and V. Goel, "The Effect of Ligament Modeling Technique on Knee Joint Kinematics: A Finite Element Study," Applied Mathematics, Vol. 4 No. 5A, 2013, pp. 91-97. doi: 10.4236/am.2013.45A011.


[1] E. M. Abdel-Rahman and M. S. Hefzy, “Three-Dimensional Dynamic Behaviour of the Human Knee Joint under Impact Loading,” Medical Engineering & Physics, Vol. 20, No. 4, 1998, pp. 276-290. doi:10.1016/S1350-4533(98)00010-1
[2] P. Beillas, G. Papaioannou, S. Tashman and K. H. Yang, “A New Method to Investigate in Vivo Knee Behavior Using a Finite Element Model of the Lower Limb,” Journal of Biomechanics, Vol. 37, No. 7, 2004, pp. 1019-1030. doi:10.1016/j.jbiomech.2003.11.022
[3] M. Z. Bendjaballah, A. Shirazi-Adl and D. J. Zukor, “Finite Element Analysis of Human Knee Joint in Varus Valgus,” Clinical Biomechanics, Vol. 12, No. 3, 1997, pp. 139-148. doi:10.1016/S0268-0033(97)00072-7
[4] L. Blankevoort and R. Huiskes, “Validation of a Three Dimensional Model of the Knee,” Journal of Biomechanics, Vol. 29, No. 7, 1996, pp. 955-961. doi:10.1016/0021-9290(95)00149-2
[5] Y. Y. Dhaher, T. H. Kwon and M. Barry, “The Effect of Connective Tissue Material Uncertainties on Knee Joint Mechanics under Isolated Loading Conditions,” Journal of Biomechanics, Vol. 43, No. 16, 2010, pp. 3118-3125. doi:10.1016/j.jbiomech.2010.08.005
[6] J. C. Gardiner, J. A. Weiss and T. D. Rosenberg, “Strain in the Human Medial Collateral Ligament during Valgus Loading of the Knee,” Clinical Orthopaedics and Related Research, 2001, pp. 266-274. doi:10.1097/00003086-200110000-00031
[7] G. Li, J. Gil, A. Kanamori and S. L. Woo, “A Validated Three-Dimensional Computational Model of a Human Knee Joint,” Journal of Biomechanical Engineering, Vo1. 21, No. 6, 1999, pp. 657-662. doi:10.1115/1.2800871
[8] G. Limbert, M. Taylor and J. Middleton, “Three-Dimensional Finite Element Modelling of the Human ACL: Simulation of Passive Knee Flexion with a Stressed and Stress-Free ACL,” Journal of Biomechanics, Vol. 37, No. 11, 2004, pp. 1723-1731. doi:10.1016/j.jbiomech.2004.01.030
[9] Y. Song, R. E. Debski, V. Musahl, M. Thomas and S. L. Woo, “A Three-Dimensional Finite Element Model of the Human Anterior Cruciate Ligament: A Computational Analysis with Experimental Validation,” Journal of Bio mechanics, Vol. 37, No. 3, 2004, pp. 383-390. doi:10.1016/S0021-9290(03)00261-6
[10] N. A. Ramaniraka, A. Terrier, N. Theumann and O. Siegrist, “Effects of the Posterior Cruciate Ligament Reconstruction on the Biomechanics of the Knee Joint: A Finite Element Analysis,” Clinical Biomechanics, Vol. 20, No. 4, 2005, pp. 434-442. doi:10.1016/j.clinbiomech.2004.11.014
[11] E. Pena, B. Calvo, M. A. Martinez and M. Doblare, “A Three-Dimensional Finite Element Analysis of the Combined Behavior of Ligaments and Menisci in the Healthy Human Knee Joint,” Journal of Biomechanics, Vol. 39, No. 9, 2006, pp. 1686-1701. doi:10.1016/j.jbiomech.2005.04.030
[12] F. Xie, L. Yang, L. Guo, Z. J. Wang and G. Dai, “A Study on Construction Three-Dimensional Nonlinear Finite Element Model and Stress Distribution Analysis of Anterior Cruciate Ligament,” Journal of Biomechanical Engi neering, Vol. 131, No. , 2009, Article ID: 121007. doi:10.1115/1.4000167
[13] T. L. Donahue, M. L. Hull, M. M. Rashid and C. R. Jacobs, “A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact,” Journal of Bio mechanical Engineering, Vol. 124, No. 3, 2002, pp. 273 280. doi:10.1115/1.1470171
[14] D. L. Skaggs, W. H. Warden and V. C. Mow, “Radial Tie Fibers Influence the Tensile Properties of the Bovine Me dial Meniscus,” Journal of Orthopaedic Research, Vol. 12, No. 2, 1994, pp. 176-185. doi:10.1002/jor.1100120205
[15] M. Tissakht and A. M. Ahmed, “Tensile Stress-Strain Characteristics of the Human Meniscal Material,” Journal of Biomechanics, Vol. 28, No. 4, 1995, pp. 411-422. doi:10.1016/0021-9290(94)00081-E
[16] D. E. Shepherd and B. B. Seedhom, “The ‘Instantaneous’ Compressive Modulus of Human Articular Cartilage in Joints of the Lower Limb,” Rheumatology, Vol. 38, No. 2, 1999, pp. 124-132. doi:10.1093/rheumatology/38.2.124
[17] F. G. Girgis, J. L. Marshall and A. Monajem, “The Cruciate Ligaments of the Knee Joint. Anatomical, Functional and Experimental Analysis,” Clinical Orthopaedics and Related Research, 1975, pp. 216-231. doi:10.1097/00003086-197501000-00033
[18] S. L. Woo, A. Kanamori, J. Zeminski, M. Yagi, C. Papa Georgiou and F. H. Fu, “The Effectiveness of Reconstruction of the Anterior Cruciate Ligament with Ham strings and Patellar Tendon. A cadaveric Study Comparing Anterior Tibial and Rotational Loads,” The Journal of Bone & Joint Surgery, Vol. 84A, 2002, pp. 907-914.
[19] C. S. Shin, A. M. Chaudhari and T. P. Andriacchi, “The Influence of Deceleration Forces on ACL Strain during Single-Leg Landing: A Simulation Study,” Journal of Biomechanics, Vol. 40, No. 5, 2007, pp. 1145-1152. doi:10.1016/j.jbiomech.2006.05.004
[20] P. Atkinson, T. Atkinson, C. Huang and R. Doane, “A Comparison of the Mechanical and Dimensional Proper ties of the Human Medial and Lateral Patellofemoral Lig aments,” Proceedings of the 46th ORS Annual Meeting, Orlando, 12-15 March 2000.
[21] P. L. Mente and J. L. Lewis, “Elastic Modulus of Calcified Cartilage Is an Order of Magnitude Less than That of Subchondral Bone,” Journal of Orthopaedic Research, Vol. 12, No. 5, 1994, pp. 637-647. doi:10.1002/jor.1100120506
[22] F. Linde, “Elastic and Viscoelastic Properties of Trabecular Bone by a Compression Testing Approach,” Danish Medical Bulletin, Vol. 41, 1994, pp. 119-138.
[23] J. C. Lotz, T. N. Gerhart and W. C. Hayes, “Mechanical Properties of Metaphyseal Bone in the Proximal Femur,” Journal of Biomechanics, Vol. 24, No. 5, 1991, pp. 317-329. doi:10.1016/0021-9290(91)90350-V
[24] J. L. Kuhn, S. A. Goldstein, M. J. Ciarelli and L. S. Mat thews, “The Limitations of Canine Trabecular Bone as a Model for Human: A Biomechanical Study,” Journal of Biomechanics, Vol. 22, No. 2, 1989, pp. 95-107. doi:10.1016/0021-9290(89)90032-8
[25] S. A. Goldstein, “The Mechanical Properties of Trabecular Bone: Dependence on Anatomic Location and Function,” Journal of Biomechanics, Vol. 20, No. 11-12, 1987, pp. 1055-1061. doi:10.1016/0021-9290(87)90023-6
[26] J. Yao, P. D. Funkenbusch, J. Snibbe, M. Maloney and A. L. Lerner, “Sensitivities of Medial Meniscal Motion and Deformation to Material Properties of Articular Cartilage, Meniscus and Meniscal Attachments Using Design of Experiments Methods,” Journal of Biomechanical Engineer ing, Vol. 128, No. 3, 2006, pp. 399-408. doi:10.1115/1.2191077
[27] T. C. Gasser, R. W. Ogden and G. A. Holzapfel, “Hyperelastic Modelling of Arterial Layers with Distributed Collagen Fibre Orientations,” Journal of the Royal Society, Interface/the Royal Society, Vol. 3, No. 6, 2006, pp. 15-35. doi:10.1098/rsif.2005.0073
[28] D. L. Butler, M. Y. Sheh, D. C. Stouffer, V. A. Samaranayake and M. S. Levy, “Surface Strain Variation in Human Patellar Tendon and Knee Cruciate Ligaments,” Journal of Biomechanical Engineering, Vol. 112, No. 1, 1990, pp. 38-45. doi:10.1115/1.2891124
[29] K. M. Quapp and J. A. Weiss, “Material Characterization of Human Medial Collateral Ligament,” Journal of Bio mechanical Engineering, Vol. 120, No. 6, 1998, pp. 757-763. doi:10.1115/1.2834890
[30] E. S. Grood and W. J. Suntay, “A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee,” Journal of Biomechanical Engineering, Vol. 105, No. 2, 1983, pp. 136-144. doi:10.1115/1.3138397
[31] A. Kiapour, A. M. Kiapour, V. Kaul, C. E. Quatman, R. C. Ditto, J. W. Levine, et al., “Finite Element Model of the Knee for Investigation of High Rate Injury Mechanisms: Development and Validation,” Proceedings of the 58th ORS Annual Meeting, San Francisco, 4-7 February 2012.
[32] A. M. Kiapour, C. E. Quatman, R. C. Ditto, J. W. Levine, S. C. Wordeman, T. E. Hewett, et al., “Influence of Axial Rotation Moments on ACL Strain: A Cadaveric Study of Single and Multi-Axis Loading of the Knee,” Proceedings of the 35th ASB Annual Meeting, Long Beach, 10-13 August 2011.
[33] A. M. Kiapour, C. E. Quatman, V. K. Goel, R. C. Ditto, S. C. Wordeman, J. W. Levine, et al., “Knee Articular Car tilage Pressure Distribution under Single and Multi-Axis Loading Conditions: Implications for ACL Injury Mecha nism,” Proceedings of the 36th ASB Annual Meeting, Geinsville, 15-18 August 2012.
[34] M. A. Freeman and V. Pinskerova, “The Movement of the Normal Tibio-Femoral Joint,” Journal of Biomechan ics, Vol. 38, No. 2, 2005, pp. 197-208. doi:10.1016/j.jbiomech.2004.02.006

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.