Share This Article:

Validation of the CHARMM27 force field for nucleic acids using 2D nuclear overhauser effect spectroscopy

Abstract Full-Text HTML Download Download as PDF (Size:398KB) PP. 58-65
DOI: 10.4236/jbpc.2013.42008    2,437 Downloads   3,921 Views   Citations


Nuclear magnetic resonance spectroscopy offers a powerful method for validation of molecular dynamics simulations as it provides information on the molecular structure and dynamics in solution. We performed 10 ns MD simulations using the CHARMM27 force field of four palindromic oligonucleotides and compared the results with experimental NOESY data using the full relaxation matrix formalism. The correlation coefficients between theoretical and experimental data for the four molecular species under study ranged from 0.82 to 0.98 confirming the high quality of the selected force field and providing a valid basis for the identification of force field imperfections. Hence, we observed an unsatisfactory treatment of deoxyribose conformational equilibrium, which resulted in the overrepresentation of the energetically favorable C3'-endo conformation in the MD trajectory. Our developed approach for force field validation based on NMR NOESY spectral data is applicable to a wide range of molecular systems and appropriate force fields.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Zinovjev, K. and Liepinsh, E. (2013) Validation of the CHARMM27 force field for nucleic acids using 2D nuclear overhauser effect spectroscopy. Journal of Biophysical Chemistry, 4, 58-65. doi: 10.4236/jbpc.2013.42008.


[1] Mackerell, A.D. (2004) Empirical force fields for biological macromolecules: Overview and issues. Journal of Computational Chemistry, 25, 1584-1604. doi:/10.1002/jcc.20082
[2] Cheatham III, T.E. and Kollman, P.A. (2000) Molecular dynamics simulation of nucleic acids. Annual Review of Physical Chemistry, 51, 435-471. doi:/10.1146/annurev.physchem.51.1.435
[3] Hayre, N.R., Singh, R.R.P. and Cox, D.L. (2011) Evaluating force field accuracy with long-time simulations of a beta-hairpin tryptophan zipper peptide. The Journal of Chemical Physics, 134, 035103. doi:/10.1063/1.3532931
[4] Geerke, D.P. and van Gunsteren, W.F. (2006) Force field evaluation for biomolecular simulation: Free enthalpies of solvation of polar and apolar compounds in various solvents. ChemPhysChem, 7, 671-678. doi:/10.1002/cphc.200500510
[5] Anderson, W.A. and Freeman, R. (1962) Influence of a second radiofrequency field on high-resolution nuclear magnetic resonance spectra. The Journal of Chemical Physics, 37, 85-103. doi:/10.1063/1.1732980
[6] Kaiser, R. (1963) Use of the nuclear overhauser effect in the analysis of high-resolution nuclear magnetic resonance spectra. The Journal of Chemical Physics, 39, 2435-2442. doi:/10.1063/1.1734045
[7] Neuhaus, D. and Williamson, M.P. (2000) The nuclear overhauser effect in structural and conformational analysis. Wiley-VCH, Chichester.
[8] Cavanagh, J., Fairbrother, W.J., Arthur, I., Palmer, G., Skelton, N.J. and Rance, M. (2010) Protein NMR spectroscopy: Principles and Practice. Elsevier Science, Amsterdam.
[9] Wüthrich, K. (1986) NMR of proteins and nucleic acids. Wiley, Chichester.
[10] Lipari, G. and Szabo, A. (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. Analysis of experimental results. Journal of the American Chemical Society, 104, 4559-4570. doi:/10.1021/ja00381a010
[11] Arthanari, H., McConnell, K.J., Beger, R., Young, M.A., Beveridge, D.L. and Bolton, P.H. (2003) Assessment of the molecular dynamics structure of DNA in solution based on calculated and observed NMR NOESY volumes and dihedral angles from scalar coupling constants. Biopolymers, 68, 3-15. doi:/10.1002/bip.10263
[12] Feenstra, K.A., Peter, C., Scheek, R., van Gunsteren, W. and Mark, A. (2002) A comparison of methods for calculating NMR cross-relaxation rates (NOESY and ROESY intensities) in small peptides. Journal of Biomological NMR, 23, 181-194. doi:/10.1023/A%3A1019854626147
[13] Foloppe, N. and MacKerell, J.A.D. (2000) All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. Journal of Computational Chemistry, 21, 86-104. doi:/10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G
[14] MacKerell, A.D. and Banavali, N.K. (2000) All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. Journal of Computational Chemistry, 21, 105-120. doi:/10.1002/(SICI)1096-987X(20000130)21:2<105::AID-JCC3>3.0.CO;2-P
[15] Keepers, J.W. and James, T.L. (1984) A theoretical study of distance determinations from NMR. Two-dimensional nuclear overhauser effect spectra. Journal of Magnetic Resonance, 57, 404-426. doi:/10.1016/0022-2364(84)90257-9
[16] Peter, C., Daura, X. and van Gunsteren, W.F. (2001) Calculation of NMR-relaxation parameters for flexible molecules from molecular dynamics simulations. Journal of Biomological NMR, 20, 297-310. doi:/10.1023/A:1011241030461
[17] Sklenar, V., Piotto, M., Leppik, R. and Saudek, V. (1993) Gradient-tailored water suppression for 1H-15N HSQC experiments optimized to retain full sensitivity. Journal of Magnetic Resonance, Series A, 102, 241-245. doi:/10.1006/jmra.1993.1098
[18] Frank, D., Stephan, G., Geerten, W.V., Guang, Z., John, P. and Ad, B. (1995) NMRPipe: A multidimensional spectral processing system based on UNIX pipes. Journal of Biomological NMR, 6, 277-293. doi:/10.1007/BF00197809
[19] C. Bartels, T.-h. Xia, M. Billeter, P. Güntert, K. Wüthrich (1995) The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. Journal of Biomological NMR, 6, 1-10. doi:/10.1007/BF00417486
[20] Bashford, D. and Gerwert, K. (1992) Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. Journal of Molecular Biology, 224, 473-486. doi:/10.1016/0022-2836(92)91009-E
[21] Chemical Computing Group Inc. Montreal.
[22] Humphrey, W., Dalke, A. and Schulten, K. (1996) VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33-38. doi:/10.1016/0263-7855(96)00018-5
[23] Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kalé, L. and Schulten, K. (2005) Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26, 1781-1802. doi:/10.1002/jcc.20289
[24] Academic Computer Centre CYFRONET.
[25] BalticGrid-II.
[26] Allen, P. and Tildesley, D.J. (1987) Computer simulation of liquids. Clarendon Press, Oxford.
[27] Ryckaert, J.-P., Ciccotti, G. and Berendsen, H.J.C. (1977) Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23, 327-341. doi:/10.1016/0021-9991(77)90098-5
[28] Feller, S.E., Zhang, Y., Pastor, R.W. and Brooks, B.R. (1995) Constant pressure molecular dynamics simulation: The Langevin piston method. The Journal of Chemical Physics, 103, 4613-4621. doi:/10.1063/1.470648
[29] Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H. and Pedersen, L.G. (1995) A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103, 8577-8593. doi:/10.1063/1.470117
[30] Mark, P. and Nilsson, L. (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. Journal of Physical Chemistry A, 105, 9954-9960. doi:/10.1021/jp003020w
[31] Neidle, S. (2002) Nucleic Acid Structure and Recognition. Oxford University Press, Oxford.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.