Share This Article:

Wireless accelerometer configuration for monitoring Parkinson’s disease hand tremor

Abstract Full-Text HTML XML Download Download as PDF (Size:793KB) PP. 62-67
DOI: 10.4236/apd.2013.22012    4,621 Downloads   8,493 Views   Citations

ABSTRACT

 

Parkinson’s disease is neurodegenerative in nature and associated with characteristic movement disorders, such as hand tremor. Wireless accelerometer applications may advance the quality of care for Parkinson’s disease patients. The acceleration waveform of the respective hand tremor can be recorded and stored for post-processing and progressive status tracking. A wireless accelerometer configuration for monitoring Parkinson’s disease hand tremor is presented. The proposed configuration is envisioned to be conducted with the assistance of a caregiver. For initial engineering proof of concept simulated Parkinson’s disease tremor is recorded through a wireless accelerometer node and contrasted to a statically positioned and tandem activated wireless accelerometer node. Statistical significance is acquired regarding the quantification of the simulated Parkinson’s disease tremor acceleration waveform and statically positioned acceleration waveform, while demonstrating a considerable degree of accuracy, consistency, and reliability.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

LeMoyne, R. , Mastroianni, T. and Grundfest, W. (2013) Wireless accelerometer configuration for monitoring Parkinson’s disease hand tremor. Advances in Parkinson's Disease, 2, 62-67. doi: 10.4236/apd.2013.22012.

References

[1] LeMoyne, R., Coroian, C., Mastroianni, T., Opalinski, P., Cozza, M. and Grundfest, W. (2009) The merits of artificial proprioception, with applications in biofeedback gait rehabilitation concepts and movement disorder characterization. In: Barros de Mello, C.A., Biomedical Engineering, Intech, Vienna, 165-198.
[2] LeMoyne, R., Coroian, C., Mastroianni, T. and Grundfest, W. (2008) Accelerometers for quantification of gait and movement disorders: A perspective review. Journal of Mechanics in Medicine and Biology, 8, 137-152. doi:10.1142/S0219519408002656
[3] Patel, S., Park, H., Bonato, P., Chan, L. and Rodgers, M. (2012) A review of wearable sensors and systems with application in rehabilitation. Journal of NeuroEngineering and Rehabilitation, 9, 1-17. doi:10.1186/1743-0003-9-21
[4] Seeley, R.R., Stephens, T.D. and Tate, P. (2003) Anatomy and physiology. McGraw-Hill, New York.
[5] Kandel, E.R., Schwartz, J.H. and Jessell, T.M. (2000) Principles of neural science. McGraw-Hill, New York.
[6] Diamond, M.C., Scheibel, A.B. and Elson, L.M. (1985) The human brain coloring book. Harper Perennial, New York.
[7] Bickley, L.S. and Szilagyi, P.G. (2003) Bates’ guide to physical examination and history taking. Lippincott Williams and Wilkins, Philadelphia.
[8] Nolte, J. and Sundsten, J.W. (2002) The human brain: An introduction to its functional anatomy. Mosby, St. Louis.
[9] Volkmann, J., Moro, E. and Pahwa, R. (2006) Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease. Movement Disorders, 21, S284-S289. doi:10.1002/mds.20961
[10] LeMoyne, R., Mastroianni, T., Cozza, M., Coroian, C. and Grundfest, W. (2010) Implementation of an iPhone for characterizing Parkinson’s disease tremor through a wireless accelerometer application. Proceeding of the 32nd Annual International Conference of the IEEE EMBS, Buenos Aires, 31 August-4 September 2010, 4954-4958.
[11] Keijsers, N.L., Horstink, M.W. and Gielen, S.C. (2006) Ambulatory motor assessment in Parkinson’s disease. Movement Disorders, 21, 34-44. doi:10.1002/mds.20633
[12] Keijsers, N.L., Horstink, M.W., van Hilten, J.J., Hoff, J.I. and Gielen, C.C. (2000) Detection and assessment of the severity of levodopa-induced dyskinesia in patients with Parkinson’s disease by neural networks. Movement Disorders, 15, 1104-1111. doi:10.1002/1531-8257(200011)15:6<1104::AID-MDS1007>3.0.CO;2-E
[13] Gurevich, T.Y., Shabtai, H., Korczyn, A.D., Simon, E.S. and Giladi, N. (2006) Effect of rivastigmine on tremor in patients with Parkinson’s disease and dementia. Movement Disorders, 21, 1663-1666. doi:10.1002/mds.20971
[14] Schrag, A., Schelosky, L., Scholz, U. and Poewe W. (1999) Reduction of Parkinsonian signs in patients with Parkinson’s disease by dopaminergic versus anticholinergic single-dose challenges. Movement Disorders, 14, 252-255. doi:10.1002/1531-8257(199903)14:2<252::AID-MDS1009>3.0.CO;2-N
[15] Weiss, A., Sharifi, S., Plotnik, M., van Vugt, J.P., Giladi, N. and Hausdorff, J.M. (2011) Toward automated, at-home assessment of mobility among patients with Parkinson disease, using a body-worn accelerometer. Neurorehabilitation and Neural Repair, 25, 810-818. doi:10.1177/1545968311424869
[16] Rouse, A.G., Stanslaski, S.R., Cong, P., Jensen, R.M., Afshar, P., Ullestad, D., Gupta, R., Molnar, G.F., Moran, D.W. and Denison, T.J. (2011) A chronic generalized bidirectional brain-machine interface. Journal of Neural Engineering, 8, 1-36. doi:10.1088/1741-2560/8/3/036018
[17] Obwegeser, A.A., Uitti, R.J., Witte, R.J., Lucas, J.A., Turk, M.F. and Wharen Jr., R.E. (2001) Quantitative and qualitative outcome measures after thalamic deep brain stimulation to treat disabling tremors. Neurosurgery. 48, 274-281.
[18] Kumru, H., Summerfield, C., Valldeoriola, F. and VallsSolé, J. (2004) Effects of subthalamic nucleus stimulation on characteristics of EMG activity underlying reaction time in Parkinson’s disease. Movement Disorders, 19, 94-100. doi:10.1002/mds.10638
[19] LeMoyne, R., Coroian, C. and Mastroianni, T. (2009) Quantification of Parkinson’s disease characteristics using wireless accelerometers. Proceeding of the International Conference on Complex Medical Engineering (CME-2009) of the IEEE/ICME, Tempe, 9-11 April 2009, 1-5.
[20] Giuffrida, J.P., Riley, D.E, Maddux B.N. and Heldman, D.A. (2009) Clinically deployable Kinesia technology for automated tremor assessment. Movement Disorders, 24, 723-730. doi:10.1002/mds.22445
[21] Cancela, J., Pansera, M., Arredondo, M.T., Estrada, J.J., Pastorino, M., Pastor-Sanz, L. and Villalar, J.L. (2010) A comprehensive motor symptom monitoring and management system: The bradykinesia case. Proceeding of the 32nd Annual International Conference of the IEEE EMBS, Buenos Aires, 31 August-4 September 2010, 1008-1011.
[22] Pastorino, M., Cancela, J., Arredondo, M.T., Pansera, M., Pastor-Sanz, L., Villagra, F., Pastor, M.A. and Martin, J.A. (2011) Assessment of bradykinesia in Parkinson’s disease patients through a multi-parametric system. Proceeding of the 33rd Annual International Conference of the IEEE EMBS, Boston, 30 August-3 September 2011, 1810-1813.
[23] Cancela, J., Pastorino, M., Arredondo, M.T., Pansera, M., Pastor-Sanz, L., Villagra, F., Pastor, M.A. and Gonzalez, A.P. (2011) Gait assessment in Parkinson’s disease patients through a network of wearable accelerometers in unsupervised environments. Proceeding of the 33rd Annual International Conference of the IEEE EMBS, Boston, 30 August-3 September 2011, 2233-2236.
[24] Kostikis, N., Hristu-Varsakelis, D., Arnaoutoglou, M., Kotsavasiloglou, C. and Baloyiannis, S. (2011) Towards remote evaluation of movement disorders via smartphones. Proceeding of the 33rd Annual International Conference of the IEEE EMBS, Boston, 30 August-3 September 2011, 5240-5243.
[25] 2013. http://www.microstrain.com/g-link.aspx

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.