Share This Article:

Finite Element Method Study on the Squats Growth Simulation

Abstract Full-Text HTML XML Download Download as PDF (Size:2567KB) PP. 29-38
DOI: 10.4236/am.2013.45A004    4,157 Downloads   6,807 Views   Citations


A simplified finite element analysis on the squats growth simulation and the effect different contact stresses has been presented. This analysis is based on the element removal study to simulate squat growth in a rail track under cyclic loading. The major principal stress (maximum principal stress failure theory) has been used as failure criteria. Evolution strategies are derived from the biological process of evolution, to find squats growth path solution to a complex rail/ wheel contact problem.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

D. Peng and R. Jones, "Finite Element Method Study on the Squats Growth Simulation," Applied Mathematics, Vol. 4 No. 5A, 2013, pp. 29-38. doi: 10.4236/am.2013.45A004.


[1] M. Kerr, A. Wilson and S. Marich, “The Epidemiology of Squats and Related Rail Defects,” Proceedings of CORE 2008 Conference on Railway Engineering: Rail-the-Core of Integrated Transport, Perth, 7-10 September 2008, pp. 83-96.
[2] S. Mohan, S. Simson, M. Spyriagin and C. Cole, “Early Detection of Rail Squats Using Eddy Current Inspection,” 10th International Heavy Haul Association Conference on Railroading in Extreme Environments, Calgary, 19-22 June 2011.
[3] M. J. M. M. Steenbergen, G. W. van Bezooijen and R. P. B. J. Dollevoet, “The Mechanisms of Squat Initiation and Growth on Train Rails,” 10th International Heavy Haul Association Conference on Railroading in Extreme Environments, Calgary, 19-22 June 2011.
[4] S. L. Grassie, D. I. Fletcher, E. A. Gallardo-Hernandez and P. Summers, “‘Squats’ and ‘Studs’ in Rails: Similarities and Differences,” 10th International Heavy Haul Association Conference on Railroading in Extreme Environments, Calgary, 19-22 June 2011.
[5] H.-K. Jun and W.-H. You, “Estimation of Crack Growth Life in Rail with a Squat Defect,” Key Engineering Materials, Vol. 417-418, 2010, pp. 313-316. doi:10.4028/
[6] S. L. Grassie, “Squats and Squat-Type Defects in Rails: The Understanding to Date,” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit published online 24 October 2011. doi:10.1177/0954409711422189
[7] S. Simson and S. Mohan, “Wheel Rail Contact Conditions Causing Rail Squats,” CORE 2010: Rail, Rejuvenation and Renaissance, Wellington, 12-14 September 2010.
[8] S. Marich and S. Mackie, “A Discussion on the Rail Squat Defects in the Hunter Valley (Version 2),” RSA Hunter Valley Internal Technical Note, Rail Corporation New South Wales, Sydney, 3 April 2001.
[9] S. Marich, “Practical/Realistic Implementation of Wheel/ Rail Contact Technologies: The Australian Experience,” Proceedings of the Seventh International Conference on Contact mechanics and Wear of Rail/Wheel Systems, Brisbane, 24-27 September 2006, pp. 3-21.
[10] Z. Li, X. Zhao, C. Esveld, R. Dollevoet and M. Molodova, “An Investigation into the Causes of Squats: Correlation Analysis and Numerical Modeling,” Wear, Vol. 265, No. 9-10, 2008, pp. 1349-1355. doi:10.1016/j.wear.2008.02.037
[11] Z. Li, “Squats on Railway Rails,” In Wheel/Rail Interface Handbook,” In: R. Lewis and O. Olofsson, Eds., Woodhead Publishing Ltd, Oxford, pp. 409-436.
[12] Z. Li, R. Dollevoet, M. Molodova and X. Zhao, “Squat Growth: Some Observations and the Validation of Numerical Predictions,” Wear, Vol. 271, No. 1-2, 2011, pp. 148-157. doi:10.1016/j.wear.2010.10.051
[13] M. Kerr, “Squat Growth Review,” Railcorp Report, Rail Corporation New South Wales, Sydney, 2011.
[14] P. Krysl and T. Belytschko, “Application of the Element Free Galerkin Method to the Propagation of Arbitrary 3D Cracks,” International Journal for Numerical Methods in Engineering, Vol. 44, No. 6, 1999, pp. 767-800. doi:10.1002/(SICI)1097-0207(19990228)44:6<767::AID-NME524>3.0.CO;2-G
[15] R. Galdos, “Finite Element Technique to Simulate the Stable Shape Evolution of Planar Cracks with an Application to Semi-Elliptical Surface Crack in a Bimaterial Finite Solid,” International Journal for Numerical Methods in Engineering, Vol. 40, No. 5, 1997, pp. 905-917. doi:10.1002/(SICI)1097-0207(19970315)40:5<905::AID-NME94>3.0.CO;2-3
[16] J. Cervenka and V. E. Saouma, “Numerical Evaluation of 3-D SIF for Arbitrary Finite Element Meshes,” Engineering Fracture Mechanics, Vol. 57, No. 5, 1997, pp. 541-563. doi:10.1016/S0013-7944(97)00024-6
[17] P. E. O’Donoghue, S. N. Atluri and D. S. Pipkins, “Computational Strategies for Fatigue Crack Growth in Three Dimensions with Application to Aircraft Components”, Engineering Fracture Mechanics, Vol. 52, No. 1, 1995, pp. 51-64. doi:10.1016/0013-7944(94)00329-G
[18] Y. Mi and M. H. Aliabadi, “Three-Dimensional Crack Growth Simulation Using BEM,” Computers and Structures, Vol. 52, No. 5, 1994, pp. 871-878. doi:10.1016/0045-7949(94)90072-8
[19] L. F. Martha, P. A. Wawrzynek and A. R. Ingraffea, “Arbitrary Crack Representation Using Solid Modeling,” Engineering with Computers, Vol. 9, No. 2, 1993, pp. 63-82. doi:10.1007/BF01199046
[20] M. D. Gilchrist and R. A. Smith, “Finite Element Model ling of Fatigue Crack Shapes,” Fatigue & Fracture of Engineering Materials & Structures, Vol. 14, No. 6, 1991, pp. 617-626. doi:10.1111/j.1460-2695.1991.tb00691.x
[21] P. K?ster, C.-P. Fritzen, H. Knobbe, H.-J. Christ and U. Krupp, “Simulation of Stage I-Crack Growth Using a 3D Model,” Proceedings in Applied Mathematics and Mechanics (PAMM), Vol. 9, 2009, pp. 201-202. doi:10.1002/pamm200910075
[22] H. A. Richard, M. Sander, M. Fulland and G. Kullmer, “Development of Fatigue Crack Growth in Real Structures,” Engineering Fracture Mechanics, Vol. 75, No. 3-4, 2008, pp. 331-340. doi:10.1016/j.engfracmech.2007.01.017
[23] N. Moes, A. Gravouil and T. Belytschko, “Non-Planar 3D Crack Growth by the Extended Finite Element and Level Sets—Part I: Mechanical Model,” International Journal for Numerical Methods in Engineering, Vol. 53, No. 11, 2002, pp. 2549-2568. doi:10.1002/nme.429
[24] B. J. Carter, P. A., Wawrzynek and A. R. Ingraffea, “Automated 3D Crack Growth Simulation,” Gallagher Special Issue of International Journal for Numerical Methods in Engineering, Vol. 47, 2002, pp. 229-253.
[25] P. A. Wawrzynek, B. J. Carter and A. R. Ingraffea, “Advances in Simulation of Arbitrary 3D Crack Growth Using FRANC3D/NG,” Proceedings of ICF12, Ottawa, 12-17 July 2009, pp.344-354.
[26] K. Kolk and G. Kuhn, “The Advanced Simulation of Fatigue Crack Growth in Complex 3D Structures,” Archive of Applied Mechanics, Vol. 76, No. 11-12, 2006, pp. 699-709. doi:10.1007/s00419-006-0092-y
[27] N. Moes, J. Dolbow and T. Belytschko, “A Finite Element Method for Crack Growth without Remeshing,” International Journal for Numerical Methods in Engineering, Vol. 46, No. 1, 1999, pp. 131-150. doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[28] Y. M. Xie and G. P. Steven, “Evolutionary Structural Optimization,” Springer, Heidelberg, 1997. doi:10.1007/978-1-4471-0985-3
[29] Y. C. Lam, “Mixed Mode Fatigue Crack Growth and the Strain Energy Density Factor,” Theoretical and Applied Fracture Mechanics, Vol. 12, 1989, pp. 67-72. doi:10.1016/0167-8442(89)90016-5
[30] R. Badaliance, “Mixed Mode Fatigue Crack Propagation,” Proceedings of First USA-Greece symposium on Mixed Mode Crack Propagation, Athens, 18-22 August 1980, pp. 77-98.
[31] D. Peng, R. Jones and T. Constable, “An Investigation of the Influence of Rail Chill on Crack Growth in a Railway Wheel Due to Braking Loads,” Engineering Fracture Mechanics, Vol. 98, 2013, pp. 1-17. doi:10.1016/j.engfracmech.2012.12.001
[32] R. Jones, S. Pitt and D. Peng, “The Generalised Frost Dugdale Approach to Modelling Fatigue Crack Growth,” Engineering Failure Analysis, Vol. 15, No. 8, 2008, pp. 1130-1149. doi:10.1016/j.engfailanal.2007.11.007
[33] P. J. Vermeulen and K. L. Johnson, “Contact of Non Spherical Bodies Transmitting Tangential Forces,” Journal of Applied Mechanics, Vol. 31, No. 2, 1964, pp. 338-340. doi:10.1115/1.3629610

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.