Share This Article:

Randomized Algorithm for Determining Stabilizing Parameter Regions for General Delay Control Systems

Abstract Full-Text HTML XML Download Download as PDF (Size:3275KB) PP. 99-107
DOI: 10.4236/jilsa.2013.52011    3,708 Downloads   5,374 Views   Citations

ABSTRACT

This paper proposes a method for determining the stabilizing parameter regions for general delay control systems based on randomized sampling. A delay control system is converted into a unified state-space form. The numerical stability condition is developed and checked for sample points in the parameter space. These points are separated into stable and unstable regions by the decision function obtained from some learning method. The proposed method is very general and applied to a much wider range of systems than the existing methods in the literature. The proposed method is illustrated with examples.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

C. Yu, B. Le, X. Li and Q. Wang, "Randomized Algorithm for Determining Stabilizing Parameter Regions for General Delay Control Systems," Journal of Intelligent Learning Systems and Applications, Vol. 5 No. 2, 2013, pp. 99-107. doi: 10.4236/jilsa.2013.52011.

References

[1] Q. Wang, C. Lin, Z. Ye, G. Wen, Y. He and C. Hang, “A Quasilmi Approach to Computing Stabilizing Parameter Ranges of Multi-Loop Pid Controllers,” Journal of Process Control, Vol. 17, No. 1, 2007, pp. 59-72. doi:10.1016/j.jprocont.2006.08.006
[2] S. Lee and Q. Wang, “Stabilization Conditions for a Class of Unstable Delay Processes of Higher Order,” Journal of the Taiwan Institute of Chemical Engineers, Vol. 41, No. 4, 2010, pp. 440-445. doi:10.1016/j.jtice.2010.03.001
[3] S. Lee, Q. Wang and C. Xiang, “Stabilization of All-Pole Unstable Delay Processes by Simple Controllers,” Journal of Process Control, Vol. 20, No. 2, 2010, pp. 235-239. doi:10.1016/j.jprocont.2009.05.005
[4] S. Lee, Q. Wang and L. Nguyen, “Stabilizing Control for a Class of Delay Unstable Processes,” ISA transactions, Vol. 49, No. 3, 2010, pp. 318-325. doi:10.1016/j.isatra.2010.03.006
[5] Z. Nie, Q. Wang, M. Wu and Y. He, “Exact Computation of Loop Gain Margins of Multivariable Feedback Systems,” Journal of Process Control, Vol. 20, No. 6, 2010, pp. 762-768. doi:10.1016/j.jprocont.2010.04.006
[6] L. Jinggong, X. Yali and L. Donghai, “Calculation of Pi Controller Stable Region Based on d-Partition Method,” 2010 International Conference on Control Automation and Systems (ICCAS), Gyeonggi-do, 27-30 October 2010, pp. 2185-2189.
[7] Q. Wang, B. Le and T. Lee, “Graphical Methods for Computation of Stabilizing Gain Ranges for Tito Systems,” 2011 9th IEEE International Conference on Control and Automation (ICCA), Santiago, 19-21 December 2011, pp. 82-87.
[8] Q. Wang, Y. He, Z. Ye, C. Lin and C. Hang, “On Loop Phase Margins of Multivariable Control Systems,” Journal of Process Control, Vol. 18, No. 2, 2008, pp. 202-211. doi:10.1016/j.jprocont.2007.06.004
[9] M. S¨oylemez, N. Munro and H. Baki, “Fast Calculation of Stabilizing Pid Controllers,” Automatica, Vol. 39, No. 1, 2003, pp. 121-126. doi:10.1016/S0005-1098(02)00180-2
[10] N. Tan, I. Kaya, C. Yeroglu and D. Atherton, “Computation of Stabilizing Pi and Pid Controllers Using the Stability Boundary Locus,” Energy Conversion and Management, Vol. 47, No. 18, 2006, pp. 3045-3058. doi:10.1016/j.enconman.2006.03.022
[11] B. Fang, “Computation of Stabilizing Pid Gain Regions Based on the Inverse Nyquist Plot,” Journal of Process Control, Vol. 20, No. 10, 2010, pp. 1183-1187. doi:10.1016/j.jprocont.2010.07.004
[12] E. Gryazina and B. Polyak, “Stability Regions in the Parameter Space: D-Decomposition Revisited,” Automatica, Vol. 42, No. 1, 2006, pp. 13-26. doi:10.1016/j.automatica.2005.08.010
[13] K. Saadaoui, S. Testouri and M. Benrejeb, “Robust Stabilizing First-Order Controllers for a Class of Time Delay Systems,” ISA transactions, Vol. 49, No. 3, 2010, pp. 277282. doi:10.1016/j.isatra.2010.02.001
[14] G. Calafiore, F. Dabbene and R. Tempo, “Research on Probabilistic Methods for Control System Design,” Automatica, Vol. 47, No. 7, 2011, pp. 1279-1293. doi:10.1016/j.automatica.2011.02.029
[15] T. Hastie, R. Tibshirani and J. H. Friedman, “The Elements of Statistical Learning: Data Mining, Inference, and Prediction,” Springer, New York, 2009. doi:10.1007/978-0-387-84858-7
[16] C. C. Chang and C. J. Lin, “LIBSVM: A Library for Support Vector Machines,” ACM Transactions on Intelligent Systems and Technology (TIST), Vol. 2, No. 3, 2011, p. 27. doi:10.1145/1961189.1961199
[17] F. Zheng, Q. Wang and T. Lee, “On the Design of Multivariable PID Controllers via LMI Approach,” Automatica, Vol. 38, No. 3, 2002, pp. 517-526. doi:10.1016/S0005-1098(01)00237-0
[18] G. Franklin, J. Powell, A. Emami-Naeini and J. Powell, “Feedback Control of Dynamic Systems,” , Vol. 3, Addison-Wesley, Reading, 1994.
[19] K. Gu, V. Kharitonov and J. Chen, “Stability of TimeDelay Systems,” Birkhauser, Boston, 2003. doi:10.1007/978-1-4612-0039-0
[20] V. Vapnik, “The Nature of Statistical Learning Theory,” 1995.
[21] S. R. Gunn, “Support Vector Machines for Classification and Regression,” ISIS Technical Report, Vol. 14, 1998.
[22] P. H. Chen, C. J. Lin and B. Sch?lkopf, “A Tutorial on νSupport Vector Machines,” Applied Stochastic Models in Business and Industry, Vol. 21, No. 2, 2005, pp. 111136.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.