Share This Article:

Secured Transmission of ECG Signals: Numerical and Electronic Simulations

Abstract Full-Text HTML XML Download Download as PDF (Size:783KB) PP. 158-169
DOI: 10.4236/jsip.2013.42023    4,112 Downloads   6,563 Views   Citations


In many domains of science and technology, as the need for secured transmission of information has grown over the years, a variety of methods have been studied and devised to achieve this goal. In this paper, we present an information securing method using chaos encryption. Our proposal uses only one chaotic oscillator both for signal encryption and decryption for avoiding the delicate synchronisation step. We carried out numerical and electronic simulations of the proposed circuit using electrocardiographic signals as input. Results obtained from both simulations were compared and exhibited a good agreement proving the suitability of our system for signal encryption and decryption.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

G. Kenfack and A. Tiedeu, "Secured Transmission of ECG Signals: Numerical and Electronic Simulations," Journal of Signal and Information Processing, Vol. 4 No. 2, 2013, pp. 158-169. doi: 10.4236/jsip.2013.42023.


[1] L. M. Pecora and T. L. Carroll, “Synchronization in Chaotic Systems,” Physical Review Letters, Vol. 64, No. 8, 1990, pp. 821-824. doi:10.1103/PhysRevLett.64.821
[2] T. L. Carroll and L. M. Pecora, “Synchronizating Chaotic Circuits,” IEEE Transactions on Circuits and Systems, Vol. 38, No. 4, 1991, pp. 453-456. doi:10.1109/31.75404
[3] L. M. Pecora and T. L. Carroll, “Synchronized Chaotic Signal and Systems,” Proceedings of Conference on Acoustics, Speech and Signal Processing, San Francisco, 23-26 March 1992, pp. 137-140.
[4] J. Kengne, J. C. Chedjou, G. Kenne, K. Kyamakya and G. H. Kom, “Analog Circuit Implementation and Synchronization of a System Consisting of a Van Der Pol Oscillator Linearly Coupled to a Duffing Oscillator,” Nonlinear Dynamics, Vol. 70, No. 3, 2012, pp. 2163-2173. doi:10.1007/s11071-012-0607-8
[5] A. Elwalkil and M. Kennedy, “Improved Implementation of Chua’s Chaotic Oscillator Using Current Feedback Op Amp,” IEEE Transactions on Circuits and Systems, Vol. 47, No. 1, 2000, pp. 76-79. doi:10.1109/81.817395
[6] J. Kengne, J. C. Chedjou, V. A. Fono and K. Kyamakya, “On the Analysis of Bipolar Transistor Based Chaotic Circuits: Case of a Two-Stage Colpitts Oscillator,” Nonlinear Dynamics, Vol. 67, No. 2, 2012, pp. 1247-1260. doi:10.1007/s11071-011-0066-7
[7] H. Li, X. Liao, S. Ullah and L. Xiao, “Analytical Proof on the Existence of Chaos in a Generalized Duffing-Type Oscillator with Fractional-Order Deflection,” Nonlinear Analysis: Real World Applications, Vol. 13, No. 6, 2012, pp. 2724-2733. doi:10.1016/j.nonrwa.2011.12.028
[8] M.-K. Liu and C. S. Suh, “Temporal and Spectral Responses of a Softening Duffing Oscillator Undergoing Route-to-Chaos,” Communications in Nonlinear Science and Numerical Simulation, Vol. 17, No. 12, 2012, pp. 5217-5228. doi:10.1016/j.cnsns.2012.04.015
[9] J. J. Healey, D. S. Broomhead, K. A. Cliffe, R. Jones and T. Mullin, “The Origins of Chaos in a Modified Van Der Pol Oscillator,” Physica D: Nonlinear Phenomena, Vol. 48, No. 2-3, 1991, pp. 322-339. doi:10.1016/0167-2789(91)90091-M
[10] S. S. Gerd, A. Papachristodoulou, M. Ulrich and F. Allgower, “Frequency Synchronization and Phase Agreement in Kuramoto Oscillator Networks with Delays,” Automatica, Vol. 48, No. 12, 2012, pp. 3008-3017. doi:10.1016/j.automatica.2012.08.013
[11] U. E. Vincent, R. K. Odunaike, J. A. Laoye and A. A. Gbindinninuola, “Adaptive Backstepping Control and Synchronization of a Modified and Chaotic Van Der PolDuffing Oscillator,” Journal of Control Theory and Applications, Vol. 9, No. 2, 2011, pp. 273-277. doi:10.1007/s11768-011-9015-8
[12] S. A. Usacheva and N. M. Ryskin, “Forced Synchronization of a Delayed-Feedback Oscillator,” Physica D: Nonlinear Phenomena, Vol. 241, No. 4, 2012, pp. 372-381. doi:10.1016/j.physd.2011.10.005
[13] T. Yanagita and S. A. Mikhailov, “Design of Oscillator Networks with Enhanced Synchronization Tolerance against Noise,” Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, Vol. 85, No. 5, 2012, Article ID: 056206. doi:10.1103/PhysRevE.85.056206
[14] J. L. Mata-Machuca and R. Martínez-Guerra, “Asymptotic Synchronization of the Colpitts Oscillator,” Computers & Mathematics with Applications, Vol. 63, No. 6, 2012, pp. 1072-1078.
[15] B. Nana, P. Woafo and S. Domngang, “Chaotic Synchronization with Experimental Application to Secure Communications,” Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 5, 2009, pp. 2266-2276. doi:10.1016/j.cnsns.2008.06.028
[16] C. W. Wu and L. O. Chua, “A Simple Way to Synchronize Chaotic Systems with Application to Secure Communication Systems,” International Journal of Bifurcation and Chaos, Vol. 3, No. 6, 1993, pp. 1619-1627. doi:10.1142/S0218127493001288
[17] M. P. Kennedy and H. Dedieu, “Experimental Demonstration of Binary Chaos-Shift-Keying Using Self-Synchronising Chua’s Circuits,” Proceedings of the Workshop of Nonlinear Dynamics and Electronic Systems (NDES’93), Dresden, 23-24 July 1993, pp. 67-72.
[18] H. Dedieu, M. P. Kennedy and M. Hasler, “Chaos Shift Keying: Modulation and Demodulation of a Chaotic Carrier Using Self-Synchronizing Chua’s Circuits,” IEEE Transactions on Circuits and Systems II, Vol. 40, No. 10, 1993, pp. 634-642. doi:10.1109/82.246164
[19] M. P. Kennedy, G. Kis, Z. Jákó and G. Kolumbán, “Chaotic Communications Systems for Unlicensed Radio,” Proceedings of the NOLTA’97, Hawaii, 29 November-3 December 1997, pp. 121-124.
[20] G. Kolumbán and B. Vizvari, “Nonlinear Dynamics and Chaotic Behaviour of the Analog Phase-Locked Loop,” In: M. P. Kennedy, Ed., Proceedings of the 3rd International Workshop on Nonlinear Dynamics of Electronic Systems, Dublin, 28-29 July 1995, pp. 99-102.
[21] G. Kolumbán, B. Vizvari, W. Schwarz and A. Abel, “Differential Chaos Shift Keying: A Robust Coding for Chaotic Communication,” Proceedings of the 4th International Workshop on Nonlinear Dynamics of Electronic Systems, Sevilla, 27-28 June 1996, pp. 87-92.
[22] G. Kolumbán, G. Kis, M. P. Kennedy and Z. Jákó, “FMDCSK: A New and Robust Solution to Chaos Communications,” Proceedings of the NOLTA’97, Hawaii, 29 November-3 December 1997, pp. 117-120.
[23] G. Kolumbán, G. Kis, Z. Jákó and M. P. Kennnedy, “FMDCSK: A Robust Modulation Scheme for Chaotic Communications,” IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, Vol. E-81A, No. 9, 1998, pp. 1798-1802.
[24] Z. Galias and G. M. Maggio, “Quadrature Chaos Shift Keying,” Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), Sydney, 6-9 May 2001, pp. 313-316.
[25] Z. Galias and G. M. Maggio, “Quadrature Chaos-Shift Keying: Theory and Performance Analysis,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 48, No. 12, 2001, pp. 1510-1519. doi:10.1109/TCSI.2001.972858

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.