Share This Article:

Study of Crystallization Process in Se80In10Pb10 by Iso-Conversional Methods

Abstract Full-Text HTML XML Download Download as PDF (Size:1280KB) PP. 49-55
DOI: 10.4236/jcpt.2013.32007    3,423 Downloads   5,945 Views   Citations

ABSTRACT

The crystallization kinetics of Se80In10Pb10 chalcogenide glass is studied using differential scanning calorimeter (DSC) at different heating rates (5, 10, 15 and 20 K/min) under non-isothermal conditions. Four iso-conversional methods (Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, Tang and Straink) were used to determine various kinetic parameters: crystallization temperature (Tα), activation energy of crystallization (Eα), Avrami exponent (nα) in non-isothermal mode. The transformation from amorphous to crystalline phase in Se80In10Pb10 is considered as a single step reaction mechanism.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

I. Ram and K. Singh, "Study of Crystallization Process in Se80In10Pb10 by Iso-Conversional Methods," Journal of Crystallization Process and Technology, Vol. 3 No. 2, 2013, pp. 49-55. doi: 10.4236/jcpt.2013.32007.

References

[1] A. B. Seddon, “Chalcogenide Glasses: A Review of Their Preparation, Properties and Applications,” Journal of Non-Crystalline Solids, Vol. 184, No. 5, 1995, pp. 44-50. doi:10.1016/0022-3093(94)00686-5
[2] P. Nemec and M. Frumar, “Synthesis and Properties of Pr3+-Doped Ge-Ga-Se Glasses,” Journal of Non-Crystalline Solids, Vol. 299-302, No. 2, 2002, pp. 1018-1022. doi:10.1016/S0022-3093(01)01127-9
[3] Y. G. Ghoi, K. H. Kim, B. J. Park and J. Heo, “1.6 mm Emission from Pr3+: (3F3, 3F4) 3H4 Transition in Pr3+- and Pr3+/Er3+ -Doped Selenide Glasses,” Applied Physics Letters, Vol. 78, No. 9, 2001, pp. 1249-1252.
[4] J. Rowlands and S. Kasap, “Amorphous Semiconductors Usher in Digital X-Ray Imaging,” Physics Today, Vol. 50, No. 11, 1997, pp. 24-30. doi:10.1063/1.881994
[5] S. A. El-Hakim, F. A. El-Wahab, A. S. Mohamed and M. F. Kotkata, “DC and AC Electrical Properties of the Chalcogenide Semiconductor Se0.9In0.1,” Physica Status Solidi A, Vol. 198, No. 1, 2003, pp. 128-136. doi:10.1002/pssa.200305959
[6] M. M. Abdel-Aziz, “Effect of Thallium on the Crystallization Kinetics of the Chalcogenide Glasses GeSe2 and GeSe4,” Journal of Thermal Analysis Calorimetry, Vol. 79, No. 3, 2005, pp. 709-714. doi:10.1007/s10973-005-0600-2
[7] D. Plano, E. Lizarraga, M. Font, J. A. Palop and C. Sanmart?n, “Thermal Stability and Decomposition of Sulphur and Selenium Compounds,” Journal of Thermal Analysis Calorimetry, Vol. 98, No. 2, 2009, pp. 559-566. doi:10.1007/s10973-009-0291-1
[8] N. Mehta and A. Kumar, “Comparative Analysis of Calorimetric Studies in Se90M10 (M = In, Te, Sb) Chalcogenide Glasses,” Journal of Thermal Analysis Calorimetry, Vol. 87, No. 2, 2007, pp. 343-348. doi:10.1007/s10973-005-7411-3
[9] M. J. Straink, “Analysis of Aluminium-Based Alloys by Calorimetry: Quantitative Analysis of Reactions and Reaction Kinetics,” International Materials Reviews, Vol. 49, No. 3-4, 2004, pp. 191-226. doi:10.1179/095066004225010532
[10] A. A. Joraid, “Estimating the Activation Energy for the Non-Isothermal Crystallization of an Amorphous Se9.1Te20.1-Se70.8 Alloy”, Thermochimica Acta, Vol. 456, No. 1, 2007, pp. 1-6. doi:10.1016/j.tca.2007.01.023
[11] L. Liu, F. W. Zhi and L. Chen, “A Kinetic Study of the Non-Isothermal Crystallization of a Zr-Based Bulk Metallic Glass,” Chinese Physics Letters, Vol. 19, No. 10, 2002, pp. 1483-1486. doi:10.1088/0256-307X/19/10/326
[12] S. Vyazovkin, “Modification of the Integral Isoconversional Method to Account for Variation in the Activation Energy,” Journal of Computational Chemistry, Vol. 22, No. 2, 2001, pp. 178-183.
[13] S. Vyazovkin and C. A. Wight, “Isothermal and Non-Isothermal Reaction Kinetics in Solids: In Search of Ways toward Consensus,” Journal of Physical Chemistry A, Vol. 101, No. 44, 1997, pp. 8279-8284. doi:10.1021/jp971889h
[14] S. Vyazovkin and C. A. Wight, “Model-Free and Model-Fitting Approaches to Kinetic Analysis of Isothermal and Non-Isothermal Data,” Thermochimica Acta, Vol. 340-341, No. 12, 1999, pp. 53-68. doi:10.1016/S0040-6031(99)00253-1
[15] S. Vyazovkin, “Advanced Isoconversional Methods,” Journal of Thermal Analysis, Vol. 49, No. 3, 1997, pp. 1493-1499. doi:10.1007/BF01983708
[16] B. S. Patil, et al., “On the Crystallization Kinetics of In Additive Se-Te Chalcogenide Glasses,” Thermochimica Acta, Vol. 513, No. 1-2, 2011, pp. 1-8. doi:10.1016/j.tca.2010.09.009
[17] C. Dohre and N. Mehta, “Iso-Conversional Kinetic Study of Non-Isothermal Crystallization in Glassy Se98Ag2 Alloy,” Journal of Thermal Analysis and Calorimetry, Vol. 102, No. 1, 2012, pp. 247-253. doi:10.1007/s10973-011-1696-1
[18] S. Vyazovkin, “A Unified Approach to Kinetic Processing of Nonisothermal Data,” International Journal of Chemical Kinetics, Vol. 28, No. 2, 1996, pp. 95-101. doi:10.1002/(SICI)1097-4601(1996)28:2<95::AID-KIN4>3.0.CO;2-G
[19] S. Vyazovkin, “Computational Aspects of Kinetic Analysis,” Thermochimica Acta, Vol. 355, No. 1-2, 2000, pp. 155-163. doi:10.1016/S0040-6031(00)00445-7
[20] H. E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis,” Analytical Chemistry, Vol. 29, No. 11, 1957, pp. 1702-1706. doi:10.1021/ac60131a045
[21] A. K. Burnham and L. N. Dinh, “A Comparison of Isoconversional and Model-Fitting Approaches to Kinetic Parameter Estimation and Application Predictions,” Journal of Thermal Analysis and Calorimetry, Vol. 89, No. 2, 2007, pp. 479-490. doi:10.1007/s10973-006-8486-1
[22] M. E. Brown and P. K. Gallagher, “Hand Book of Thermal Analysis and Calorimetry,” Elsevier, Amsterdam, 2008.
[23] T. Ozawa, “Kinetics of Non-Isothermal Crystallization,” Polymer, Vol. 12, No. 3, 1971, pp. 150-158. doi:10.1007/s10973-006-8486-1
[24] T. Ozawa, “A New Method of Analyzing Thermo Gravimetric Data,” Bulletin of the Chemical Society of Japan, Vol. 38, No. 11, 1965, pp. 1881-1886. doi:10.1246/bcsj.38.1881
[25] T. Wanjun and C. Donghua, “An Integral Method to Determine Variation in Activation Energy with Extent of Conversion,” Thermochimica Acta, Vol. 443, No. 1-2, 2005, pp. 72-76. doi:10.1016/j.tca.2005.02.004
[26] M. J. Starink, “The Determination of Activation Energy from Linear Heating Rate Experiments: A Comparison of the Accuracy of Isoconversion Methods,” Thermochimica Acta, Vol. 404, No. 1-2, 2003, pp. 163-176. doi:10.1016/S0040-6031(03)00144-8
[27] M. J. Starink, “Comments on Precipitation Kinetics of Al-1.12Mg2Si-0.35Si and Al-1.07Mg2Si-0.33Cu Alloys,” Journal of Alloys and Compounds, Vol. 443, No. 1-2, 2007, pp. L4-L6. doi:10.1016/j.jallcom.2006.06.069
[28] E. Marian, B. Tita, T. Jurca, A. Fulias, L. Vicas and D. Tita, “Thermal Behaviour of Erythromycin-Active Substance and Tablets. Part 1. Kinetic Study of the Active Substance under Non-Isothermal Conditions,” Journal of Thermal Analysis and Calorimetry, Vol. 111, No. 2, 2013, pp. 1025-1031. doi:10.1007/s10973-012-2284-8
[29] B. Boonchom, “Kinetics and Thermodynamic Properties of the Thermal Decomposition of Manganese Dihydrogenphosphate Dihydrate,” Journal of Chemical and Engineering Data, Vol. 53, No. 7, 2008, pp. 1533-1538. doi:10.1021/je800103w
[30] X. Gao and D. Dollimore, “The Thermal Decomposition of Oxalates: Part 26. A Kinetic Study of the Thermal Decomposition of Manganese(II) Oxalate Dihydrate,” Thermochimica Acta, Vol. 215, No. 2, 1993, pp. 47-63. doi:10.1016/0040-6031(93)80081-K
[31] L. T. Vlaev, M. M. Nikolova and G. G. Gospodinov, “Non-Isothermal Kinetics of Dehydration of Some Selenite Hexahydrates,” Journal of Solid State Chemistry, Vol. 177, No. 8, 2004, pp. 2663-2669. doi:10.1016/j.jssc.2004.04.036
[32] B. Boonchom, “Kinetic and Thermodynamic Studies of MgHPO4?3H2O by Non-Isothermal Decomposition Data,” Journal of Thermal Analysis and Calorimetry, Vol. 98, No. 3, 2009, pp. 863-871. doi:10.1007/s10973-009-0108-2
[33] S. Vyazovkin and I. Dranca, “Isoconversional Analysis of Combined Melt and Glass Crystallization Data,” Macromolecular Chemistry and Physics, Vol. 207, No. 1, 2006, pp. 20-25. doi:10.1002/macp.200500419
[34] J. C. Fisher and D. Turnbull, “Rate of Nucleation in Condensed Systems,” Journal of Chemical Physics, Vol. 17, No. 4, 1949, p. 71. doi:10.1063/1.1747279
[35] W. Lu, B. Yan and W. Huang, “Complex Primary Crystallization Kinetics of Amorphous Finemet Alloy,” Journal of Non-Crystalline Solids, Vol. 351, No. 40-42, 2005, pp. 3320-3324. doi:10.1016/j.jnoncrysol.2005.08.018

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.