Share This Article:

Zinc Accumulation Characteristics of Two Exophiala Strains and Their Antioxidant Response to Zn2+ Stress

Abstract Full-Text HTML XML Download Download as PDF (Size:751KB) PP. 12-19
DOI: 10.4236/jep.2013.44A003    3,968 Downloads   6,138 Views   Citations

ABSTRACT

Zinc is an essential element, which is toxic for organisms in their natural environments in excessive amounts. The zinc accumulation characteristics of a Zn-tolerant strain (H93, EC50 = 1010 mg·L–1 Zn2+) and a Zn-sensitive strain (B40-3, EC50 = 26 mg·L–1 Zn2+), Exophiala spp. and their antioxidant response to Zn2+ stress were comparatively characterized. Under their respective Zn2+ median effective concentrations, H93 absorbed 2.5-fold and accumulated 5.2-fold more Zn than B40-3. An elution experiment using CaCl2 revealed that Zn mainly accumulated intracellularly in the mycelia of the two fungal strains. The modulation of antioxidant components and antioxidant enzyme activities of the two fungal strains were comparatively analyzed under different Zn2+ concentrations. The activity of the total superoxide dismutase, peroxidase, and glutathione of H93 was always higher than that of B40-3, and the malondialdehyde content in H93 was also higher than that of B40-3. The current results suggested that the Zn tolerance of Exophiala strain may be attributed to their various instinctive behaviors with different rates of Zn accumulation and modulation of antioxidant components.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Y. Diao, T. Li and Z. Zhao, "Zinc Accumulation Characteristics of Two Exophiala Strains and Their Antioxidant Response to Zn2+ Stress," Journal of Environmental Protection, Vol. 4 No. 4A, 2013, pp. 12-19. doi: 10.4236/jep.2013.44A003.

References

[1] M. R. McGinnis and L. Ajello, “A New Species of Exophiala Isolated from Channel Catfish,” Mycologia, Vol. 66, No. 3, 1974, pp. 518-520. doi:10.2307/3758495
[2] J. S. Zeng and G. S. De Hoog, “Exophiala spinifera and Its Allies: Diagnostics from Morphology to DNA Barcoding,” Medical Mycology, Vol. 46, No. 3, 2008, pp. 193-208. doi:10.1080/13693780701799217
[3] C. Munchan, O. Kurata, S. Wada, K. Hatai1, A. Sano, K. Kamei and N. Nakaoka, “Exophiala xenobiotica Infection in Cultured Striped Jack, Pseudocaranx dentex (Bloch & Schneider), in Japan,” Journal of Fish Diseases, Vol. 32, No. 10, 2009, pp. 893-900. doi:10.1111/j.1365-2761.2009.01068.x
[4] H. D. Addy, M. M. Piercey and R. S. Currah, “Microfungal Endophytes in Root,” Canadian Journal of Botany, Vol. 83, No. 1, 2005, pp. 1-13. doi:10.1139/b04-171
[5] W. Wang, “Dark Septate Endophytespp. Taxonomy and Distribution,” PhD Dissertation, University of Alberta, Edmonton, 2009.
[6] A. Jumpponen and J. M. Trappe, “Dark Septate Endophytes: A Review of Facultative Biotrophic Root-Colonizing Fungi,” New Phytologist, Vol. 140, No. 4, 1998, pp. 295-310. doi:10.1046/j.1469-8137.1998.00265.x
[7] J. R. Barrow, “Atypical Morphology of Dark Septate Fungal Root Endophytes of Bouteloua in Arid Southwestern USA Rangelands,” Mycorrhiza, Vol. 13, No. 5, 2003, pp. 239-247. doi:10.1007/s00572-003-0222-0
[8] Z. L. Yuan, C. L. Zhang, F. C. Lin and C. P. Kubicek, “Identity, Diversity, and Molecular Phylogeny of the Endophytic Mycobiota in the Roots of Rare Wild Rice (Oryza granulate) from a Nature Reserve in Yunnan, China,” Applied and Environmental Microbiology, Vol. 76, No. 5, 2010, pp. 1642-1652. doi:10.1128/AEM.01911-09
[9] A. Jumpponen, “Dark Septate Endophytes—Are They Mycorrhizal?” Mycorrhiza, Vol. 11, No. 4, 2001, pp. 207-211. doi:10.1007/s005720100112
[10] M. J. Liu, X. T. Zhang and Z. W. Zhao, “Advances in the Research of Dark Septate Endophytes,” Mycosystema, Vol. 28, No. 6, 2009, pp. 888-894.
[11] K. Mandyam and A. Jumpponen, “Seeking the Elusive Function of the Root-Colonising Dark Septate Endophytic Fungi,” Studies in Mycology, Vol. 53, No. 1, 2005, pp. 173-189. doi:10.3114/sim.53.1.173
[12] K. K. Newsham, R. Upson and D. J. Read, “Mycorrhizas and Dark Septate Root Endophytes in Polar Regions,” Fungal Ecology, Vol. 2, No. 1, 2009, pp. 10-20. doi:10.1016/j.funeco.2008.10.005
[13] C. C. Liang, Y. P. Xiao and Z. W. Zhao, “Arbuscular Mycorrhiza and Dark Septate Endophytes in an Abandoned Lead-Zinc Mine in Huize, Yunnan, China,” Chinese Journal of Applied and Environmental Biology, Vol. 13, No. 6, 2007, pp. 811-817.
[14] Y. J. Zhang, Y. Zhang, M. J. Liu, X. D. Shi and Z. W. Zhao, “Dark Septate Endophyte (DSE) Fungi Isolated from Metal Polluted Soils: There Taxonomic Position, Tolerance, and Accumulation of Heavy Metals in Vitro,” The Journal of Microbiology, Vol. 46, No. 6, 2008, pp. 624-632. doi:10.1007/s12275-008-0163-6
[15] T. Li, M. J. Liu, X. T. Zhang, H. B. Zhang, T. Sha and Z. W. Zhao, “Improved Tolerance of Maize (Zea mays L.) to Heavy Metals by Colonization of a Dark Septate Endophyte (DSE) Exophiala pisciphila, ” Science of The Total Environment, Vol. 409, No. 6, 2011, pp. 1069-1074. doi:10.1016/j.scitotenv.2010.12.012
[16] P. Jaeckel, G. J. Krauss and G. Krauss, “Cadmium and Zinc Response of the Fungi Heliscus lugdunensis and Verticillium cf. alboatrum Isolated from Highly Polluted Water,” Science of The Total Environment, Vol. 346, No. 1-3, 2005, pp. 274-279. doi:10.1016/j.scitotenv.2004.12.082
[17] R. L. Ramos, L. A. B. Jacome, J. M. Barron, L. F. Rubio and R. M. G. Coronado, “Adsorptionof Zinc (II) from an Aqueous Solution onto Activated Carbon,” Journal of Hazardous Materials, Vol. Vol. 90, No. 1, 2002, pp. 27-38. doi:10.1016/S0304-3894(01)00333-8
[18] R. Chandran, A. A. Sivakumar, S. Mohandass and M. Aruchami, “Effect of Cadmium and Zinc on Antioxidant Enzyme Activity in the Gastropod, Achatina fulica,” Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, Vol. 140, No. 3-4, 2005, pp. 422-426. doi:10.1016/j.cca.2005.04.007
[19] K. Paraszkiewicz, P. Bernat, M. Naliwajski and J. Dlugoński, “Lipid Peroxidation in the Fungus Curvularia lunata Exposed to Nickel,” Archives of Microbiology, Vol. 192, No. 2, 2010, pp. 135-141. doi:10.1007/s00203-009-0542-3
[20] Z. Bai, L. M. Harvey and B. McNeil, “Oxidative Stress in Submerged Cultures of Fungi,” Critical Reviews in Biotechnology, Vol. 23, No. 4, 2003, pp. 267-302. doi:10.1080/07388550390449294
[21] R. N. N. Abskharon, S. H. A. Hassan, M. H. Kabir, S. A. Qadir, S. M. F. G. El-Rab and M. H. Wang, “The Role of Antioxidants Enzymes of E. coli ASU3, a Tolerant Strain to Heavy Metals Toxicity, in Combating Oxidative Stress of Copper,” World Journal of Microbiology and Biotechnology, Vol. 26, No. 2, 2010, pp. 241-247. doi:10.1007/s11274-009-0166-4
[22] S. Radic, M. Babic, D. Skobic, V. Roje and B. Pevalek-Kozlina, “Ecotoxicological Effects of Aluminum and Zinc on Growth and Antioxidants in Lemna minor L,” Ecotoxicology and Environmental Safety, Vol. 73, No. 3, 2010, pp. 336-342. doi:10.1016/j.ecoenv.2009.10.014
[23] S. Farshian, J. Khara and P. Malekzadeh, “Effect of Arbuscular Mycorrhizal (G. etunicatum) Fungus on Antioxidant Enzymes Activity under Zinc Toxicity in Lettuce Plants,” Pakistan Journal of Biological Sciences, Vol. 10, No. 11, 2007, pp. 1865-1869. doi:10.3923/pjbs.2007.1865.1869
[24] P. Baptista, S. Ferreira, E. Soares, V. Coelho and M. L. Bastos, “Tolerance and Stress Response of Macrolepiota procera to Nickel,” Journal of Agricultural and Food Chemistry, Vol. 57, No. 15, 2009, pp. 7145-7152. doi:10.1021/jf902075b
[25] H. Xu, P. Song, W. B. Gu and Z. R. Yang, “Effects of Heavy Metals on Production of Thiol Compounds and Antioxidant Enzymes in Agaricus bisporus,” Ecotoxicology and Environmental Safety, Vol. 74, No. 6, 2011, pp. 1685-1692. doi:10.1016/j.ecoenv.2011.04.010
[26] M. Choudhary, U. K. Jetley, M. A. Khan, S, Zutshi and T. Fatma, “Effect of Heavy Metal Stress on Proline, Malondialdehyde, and Superoxide Dismutase Activity in the Cyanobacterium Spirulina platensis-S5,” Ecotoxicology and Environmental Safety, Vol. 66, No. 2, 2007, pp. 204-209. doi:10.1016/j.ecoenv.2006.02.002
[27] O. Fιrat and F. Kargin, “Effects of Zinc and Cadmium on Erythrocyte Antioxidant Systems of a Freshwater Fish Oreochromis niloticus,” Journal of Biochemical and Molecular Toxicology, Vol. 24, No. 4, 2010, pp. 223-229. doi:10.1002/jbt.20327
[28] A. A. Fernando and R. S. Currah, “A Comparative Study of the Effects of the Root Endophytes Leptodontidium orchidicola and Phialocephala fortinii (Fungi Imperfecti) on the Growth of Some Subalpine Plants in Culture,” Canadian Journal of Botany, Vol. 74, No. 7, 1996, pp. 1071-1078. doi:10.1139/b96-131
[29] A. L. Khan, M. Hamayun, N. Ahmad, M. Waqas, S. M. Kang, Y. H. Kim and I. J. Lee, “Exophiala sp. LHL08 Reprograms Cucumis sativus to Higher Growth under Abiotic Stresses,” Physiologia Plantarum, Vol. 143, No. 4, 2011, pp. 329-343. doi:10.1111/j.1399-3054.2011.01508.x
[30] A. L. Khan, M. Hamayun, M. Waqas, S. M. Kang, Y. H. Kim, D. H. Kim and I. J. Lee, “Exophiala sp. LHL08 Association Gives Heat Stress Tolerance by Avoiding Oxidative Damage to Cucumber Plants,” Biology and Fertility of Soils, Vol. 48, No. 5, 2012, pp. 519-529. doi:10.1007/s00374-011-0649-y
[31] D. H. Marx, “The Influence of Ectotrophic Ectomycorrhizal Fungi on the Resistance of Pine Roots to Pathogenic Infections. I. Antagonism of Mycorrhizal Fungi to Pathogenic Fungi and Soil Bacteria,” Phytopathology, Vol. 59, No. 4, 1969, pp. 153-163.
[32] P. Lankinen, M. A. Kahkonen, J. Rajasarkka, M. Virta and A. Hatakka, “The Effect of Nickel Contamination on the Growth of Litter-Decomposing Fungi, Extracellular Enzyme Activities and Toxicity in Soil,” Boreal Environment Research, Vol. 16, No. 3, 2011, pp. 229-239.
[33] C. Collin-Hansen, R. A. Andersen and E. Steinnes, “Molecular Defense Systems Are Expressed in the King Bolete (Boletus edulis) Growing near Metal Smelters,” Mycologia, Vol. 97, No. 5, 2005, pp. 973-983. doi:10.3852/mycologia.97.5.973
[34] M. Vallino, E. Martino, F. Boella, C. Murat, M. Chiapello and S. Perotto, “Cu, Zn Superoxide Dismutase and Zinc Stress in the Metal-Tolerant Ericoid Mycorrhizal Fungus Oidiodendron maius Zn,” FEMS Microbiology Letters, Vol. 293, No. 1, 2009, pp. 48-57. doi:10.1111/j.1574-6968.2009.01503.x
[35] J. V. Colpaert, L. A. H. Muller, M. Lambaerts, K. Adriaensen and J. Vangronsveld, “Evolutionary Adaptation to Zn Toxicity in Populations of Suilloid Fungi,” New Phytologist, Vol. 162, No. 2, 2004, pp. 549-560. doi:10.1111/j.1469-8137.2004.01037.x
[36] J. W. G. Cairney, D. M. V. Leerdam and D. M. Chen, “Metal Insensitivity in Ericoid Mycorrhizal Endophytes from Woollsia pungens (Epacridaceae),” Australian Journal of Botany, Vol. 49, No. 5, 2001, pp. 571-577. doi:10.1071/BT01005
[37] L. Ezzouhri, E. Castro, M. Moya, F. Espinola and K. Lairini, “Heavy Metal Tolerance of Filamentous Fungi Isolated from Polluted Sites in Tangier, Morocco,” African Journal of Microbiology Research, Vol. 3, No. 2, 2009, pp. 35-48.
[38] L. A. H. Muller, A. R. Craciun, J. Ruytinx, M. Lambaerts, N. Verbruggen, J. Vangronsveld and J. V. Colpaert, “Gene Expression Profiling of a Zn-Tolerant and a Zn-Sensitive Suillus luteus Isolate Exposed to Increased External Zinc Concentrations,” Mycorrhiza, Vol. 17, No. 7, 2007, pp. 571-580. doi:10.1007/s00572-007-0134-5
[39] G. M. Gadd, “Interaction of Fungi with Toxic Metals,” New Phytologist, Vol. 124, No. 1, 1993, pp. 25-60. doi:10.1111/j.1469-8137.1993.tb03796.x
[40] J. A. Sayer and G. M. Gadd, “Solubilization and Transformation of Insoluble Inorganic Metal Compounds to Insoluble Metal Oxalates by Aspergillus niger,” Mycological Research, Vol. 101, No. 6, 1997, pp. 653-661. doi:10.1017/S0953756296003140
[41] M. González-Guerrero, L. H. Melville, N. Ferrol, J. N. A. Lott, C. Azcón-Aguilar and R. L. Peterson, “Ultrastructural Localization of Heavy Metals in the Extraradical Mycelium and Spores of the Arbuscular Mycorrhizal Fungus Glomus intraradices,” Canadian Journal of Microbiology, Vol. 54, No. 2, 2008, pp. 103-110. doi:10.1139/W07-119
[42] H. Zhao and D. Eide, “The ZRT2 Gene Encodes the Low Affinity Zinc Transporter in Saccharomyces cerevisiae,” The Journal of Biological and Chemistry, Vol. 271, No. 2, 1996, pp. 23203-23210.
[43] L. A. Gaither and D. J. Eide, “Eukaryotic Zinc Transporters and Their Regulation,” BioMetals, Vol. 14, No. 3-4, 2001, pp. 251-270. doi:10.1023/A:1012988914300
[44] S. R. Powell, “The Antioxidant Properties of zinc,” The Journal of Nutrition, Vol. 130, No. 5, 2000, pp. 1447s-1454s.
[45] G. M. Zeng, A. W. Chen, G. Q. Chen, X. J. Hu, S. Guan, C. Shang, L. H. Lu and Z. J. Zou, “Responses of Phanerochaete chrysosporium to Toxic Pollutants: Physiological Flux, Oxidative Stress, and Detoxification,” Environmental Science and Technology, Vol. 46, No. 14, 2012, pp. 7818-7825. doi:10.1021/es301006j
[46] P. P. Alia Saradhi and P. Mohanty, “Proline in Relation to Free Radical Production in Seedlings of Brassica juncea Raised under Sodium Chloride Stress,” Plant and Soil, Vol. 155-156, No. 1, 1993, pp. 497-500. doi:10.1007/BF00025092
[47] F. R. Cavalcanti, J. T. A. Oliveira, A. S. Martins-Miranda, R. A. Viégas and J. A. G. Silveira, “Superoxide Dismutase, Catalase and Peroxidase Activities Do Not Confer Protection against Oxidative Damage in Salt-Stressed Cowpea Leaves,” New Phytologist, Vol. 163, No. 3, 2004, pp. 563-571. doi:10.1111/j.1469-8137.2004.01139.x
[48] N. Ercal, H. Gurer-Orhan and N. Aykin-Burns, “Toxic Metals and Oxidative Stress Part I: Mechanisms Involved in Metal-Induced Oxidative Damage,” Current Topics in Medicinal Chemistry, Vol. 1, No. 6, 2001, pp.529-539. doi:10.2174/1568026013394831
[49] M. J. Penninckx, “An Overview on Glutathione in Saccharomyces versus Non-Conventional Yeasts,” FEMS Yeast Research, Vol. 2, No. 3, 2002, pp. 295-305.
[50] M. M. Azevedo, A. Carvalho, C. Pascoal, F. Rodrigues and F, Cássio, “Responses of Antioxidant Defenses to Cu and Zn Stress in Two Aquatic Fungi,” Science of The Total Environment, Vol. 377, No. 2-3, 2007, pp. 233-243. doi:10.1016/j.scitotenv.2007.02.027
[51] E. Z. Krumova, S. B. Pashova, P. A. Dolashka-Angelova, T. Stefanova and M. B. Angelova, “Biomarkers of Oxidative Stress in the Fungal Strain Humicola lutea under Copper Exposure,” Process Biochemistry, Vol. 44, No. 3, 2009, pp. 288-295. doi:10.1016/j.procbio.2008.10.023

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.