Thermal Conductivity Measurement of Zr-ZrO2 Simulated Inert Matrix Nuclear Fuel Pellet

Abstract

For an evaluation of a thermal conductivity of Zr + 30 vol% ZrO2 simulated inert matrix nuclear fuel pellet, a simulated fuel pellet was fabricated using a hot-pressing method at 800°C in a vacuum and at a 20 MPa load. And several thermophysical properties of the simulated inert matrix fuel pellet were measured and calculated. The thermal diffusivity and linear thermal expansion as a function of temperature of the simulated fuel pellet were measured using a laser flash method and a dilatometry, respectively. Finally, based on the experimental data, the thermal conductivity of the simulated inert matrix fuel pellet was calculated and evaluated.

Share and Cite:

D. Kim, Y. Rhee, J. Kim, J. Oh, K. Kim and J. Yang, "Thermal Conductivity Measurement of Zr-ZrO2 Simulated Inert Matrix Nuclear Fuel Pellet," World Journal of Nuclear Science and Technology, Vol. 3 No. 2, 2013, pp. 46-50. doi: 10.4236/wjnst.2013.32008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] IAEA-TECDOC-1516, “Viability of Inert Matrix Fuel in Reducing Plutonium Amounts in Reactors,” IAEA, VIENNA, 2006.
[2] G. Ledergerber, C. Degueldre, P. Heimgartner, M. A. Pouchon and U. Kasemeyer, “Inert Matrix Fuel for the Utilization of Plutonium,” Progress in Nuclear Energy, Vol. 38, No. 3, 2001, pp. 301-308. doi:10.1016/S0149-1970(00)00122-0
[3] R. Fielding, M. Meyer, J. Jue and J. Gan, “Gas-Cooled Fast Reactor Fuel Fabrication,” Journal of Nuclear Materials, Vol. 371, No. 1, 2007, pp. 243-249. doi:10.1016/j.jnucmat.2007.05.011
[4] M. K. Meyer, R. Fielding and J. Gan, “Fuel Development for Gas-Cooled Fast Reactors,” Journal of Nuclear Materials, Vol. 371, No. 1-3, 2007, pp. 281-287. doi:10.1016/j.jnucmat.2007.05.013
[5] D. E. Burkes, R. S. Fielding, D. L. Porter, M. K. Meyer and B. J. Makenas, “A US Perspective on Fast Reactor Fuel Fabrication Technology and Experience. Part II: Ceramic Fuels,” Journal of Nuclear Materials, Vol. 393, No. 1, 2009, pp. 1-11. doi:10.1016/j.jnucmat.2009.04.023
[6] M. Burghartz, H. J. Matzke, C. Léger, G. Vambenepe and M. Rome, “Inert Matrices for the Transmutation of actinides: Fabrication, Thermal Properties and Radiation Stability of Ceramic Materials,” Journal of Alloy and Compound, Vol. 271-273, 1998, pp. 544-548. doi:10.1016/S0925-8388(98)00149-2
[7] H. Kleykamp, “Selection of Materials as Diluents for Burning of Plutonium Fuels in Nuclear Reactors,” Journal of Nuclear Materials, Vol. 275, No. 1, 1999, pp. 1-11. doi:10.1016/S0022-3115(99)00144-0
[8] M. A. Pouchoun, C. Degueldre and P. Tissot, “Determination of the Thermal Conductivity in Zirconia Based Inert Matrix Nuclear Fuel by Oscillating Differential Scanning Calorimetry and Laser Flash,” Thermochimica Acta, Vol. 323, No. 1-2, 1998, pp. 109-121. doi:10.1016/S0040-6031(98)00504-8
[9] Y.-W. Lee, H. S. Kim, S. H. Kim, C. Y. Joung, S. H. Na, G. Ledergerber, P. Heimgartner, M. Pouchon and M. Burghartz, “Preparation of Simulated Inert Matrix Fuel with Different Powders by Dry Milling Method,” Journal of Nuclear Materials, Vol. 274, No. 1-2, 1999, pp. 7-14. doi:10.1016/S0022-3115(99)00094-X
[10] K. S. Kumar, T. Mathews and N. P. Bhat, “Study on Thermal Decomposition and Sintering Behaviour of Internally Gelated Simulated Inert Matrix Fuel,” Thermochimica Acta, Vol. 427, No. 1-2, 2005, pp. 27-30. doi:10.1016/j.tca.2004.08.008
[11] S. Baldi, J. Porta, Y. Peneleau, S. Pelloni, J.-M. Paratte and R. Chawla, “Importance of Zirconium Cross Sections in Calculating Reactivity Effects for Inert Matrix Fuels,” Progress in Nuclear Energy, Vol. 38, No. 3-4, 2001, pp. 351-354. doi:10.1016/S0149-1970(00)00133-5
[12] A. Savchenko, I. Konovalov, S. Ershov, A. Laushkin, G. Kulakov, S. Maranchak, Y. Konovalov and E. Malamanova, “Zirconium Matrix Alloys for High Uranium Content Dispersion Type Fuel,” International Meeting on LWR Fuel Performance, Salamanca, 2006.
[13] L. V. Duyn, “Evaluation of the Mechanical Behavior of a Metal Matrix Dispersion Fuel for Plutonium Burning,” Georgia Institute of Technology, 2003.
[14] R. Fielding, J. F. Jue and J. Stuart, “Zirconium Metal Inert Matrix Fuel Fabrication,” Transactions of American Nuclear Society, Vol. 94, 2006, pp. 742-743.
[15] B. H. Lee, Y. H. Koo and D. S. Sohn, “Modelling of Thermal Conductivity for High Burnup UO2 Fuel Retaining Rim Region,” Journal of Korean Nuclear Society, Vol. 29, No. 3, 1997, p. 201.
[16] B. H. Lee, Y. H. Koo, J. S. Cheon, J. Y. Oh, H. K. Joo and D. S. Sohn, “A Thermal Conductivity Model for LWR MOX Fuel and Its Verification Using In-Pile Data,” Journal of Korean Nuclear Society, Vol. 34, No. 5, 2002, p. 482.
[17] K. W. Song, Y. H. Jeong, K. S. Kim, J. G. Bang, T. H. Chun, H. K. Kim and K. N. Song, “High Burnup Fuel Technology in Korea,” Journal of Korean Nuclear Society, Vol. 40, No. 1, 2008, pp. 21-36.
[18] P. G. Lucuta, H. J. Matzke and I. J. Hastings, “A Pragmatic Approach to Modelling Thermal Conductivity of Irradiated UO2 Fuel: Review and Recommendations,” Journal of Nuclear Materials, Vol. 232, No. 2-3, 1996, pp. 166-180. doi:10.1016/S0022-3115(96)00404-7
[19] C. Ronchi, M. Sheindlin, D. Staicu and M. Kinoshita, “Effect of Burn-Up on the Thermal Conductivity of Uranium Dioxide up to 100,000 MWdt-1,” Journal of Nuclear Material, Vol. 327, No. 1, 2004, pp. 58-76. doi:10.1016/j.jnucmat.2004.01.018
[20] J. J. Carbajo, G. L. Yoder, S. G. Popov and V. K. Ivanov, “A Review of the Thermophysical Properties of MOX and UO2 Fuels,” Journal of Nuclear Materials, Vol. 299, No. 3, 2001, pp. 181-198. doi:10.1016/S0022-3115(01)00692-4
[21] University of Sheffield and WebElements Ltd., “WebElements: The Periodic Table on the Web.” http://www.webelements.com/
[22] K. Minato, T. Shiratori, H. Serizawa, K. Hayashi, K. Une, K. Nogita, M. Hirai and M. Amaya, “Thermal Conductivities of Irradiated UO2 and (U, Gd)O2,” Journal of Nuclear Materials, Vol. 288, No. 1, 2001, pp. 57-65. doi:10.1016/S0022-3115(00)00578-X
[23] K. Kurosaki, R. Ohshima, M. Uno, S. Yamanaka, K. Yamamoto and T. Namekawa, “Thermal Conductivity of (U, Ce)O2 with and without Nd or Zr,” Journal of Nuclear Materials, Vol. 294, 2001, pp. 193-197. doi:10.1016/S0022-3115(01)00458-5
[24] A. L. Loeb, “A Theory of Thermal Conductivity of Porous Materials,” Journal of American Ceramic Society, Vol. 37, No. 2, 1954, pp. 96-99. doi:10.1111/j.1551-2916.1954.tb20107.x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.