Share This Article:

Novel Nitrobenzazolo[3,2-a]quinolinium Salts Induce Cell Death through a Mechanism Involving DNA Damage, Cell Cycle Changes, and Mitochondrial Permeabilization

Abstract Full-Text HTML XML Download Download as PDF (Size:704KB) PP. 13-22
DOI: 10.4236/ojapo.2013.22002    3,343 Downloads   11,071 Views   Citations

ABSTRACT

This study reports the capacity of three nitro substituted benzazolo[3,2-a]quinolinium salts NBQs: NBQ 95 (NSC-763304), NBQ 38 (NSC 763305), and NBQ 97 (NSC-763306) as potential antitumor agents. NBQ’s are unnatural alkaloids possessing a positive charge that could facilitate interaction with cell organelles. The anticancer activities of these compounds were evaluated through the National Cancer Institute (NCI) 60 cell line screening which represents diverse histologies. The screening was performed at 10 μM on all cell lines. Results from the NCI screening indicated cytotoxicity activity on six cell lines. In order to explore a possible mechanism of action, a detailed biological activity study of NBQ 95 and NBQ 38 was performed on A431 human epidermoid carcinoma cells to determine an apoptotic pathway involving, cell cycle changes, DNA fragmentation, mutations, mitochondrial membrane permeabilization and caspases activation. DNA fragmentation, cell cycle effects, mutagenesis, mitochondrial permeabilization and activation of caspases were determined by fluorimetry and differential imaging. Our data showed that A431 growth was inhibited with an average IC50 of 30 mM. In terms of the mechanism, these compounds interacted with DNA causing fragmentation and cell cycle arrest at sub G0/G1 stage. Mutagenesis was higher for NBQ 38 and moderate for NBQ 95 Mitochondrial permeabilization was observed with NBQ 38 and slightly for NBQ 95. Both compounds caused activation of Caspases 3 and 7 suggesting an apoptotic cell death pathway through an intrinsic mechanism. This study reports evidence of the toxicity of these novel compounds with overlapping structural and mechanistic similarities to ellipticine, a known anti-tumor compound.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

C. Vélez, O. Cox, C. Rosado-Berrios, D. Molina, L. Arroyo, S. Carro, A. Filikov, V. Kumar, S. Malhotra, M. Cordero and B. Zayas, "Novel Nitrobenzazolo[3,2-a]quinolinium Salts Induce Cell Death through a Mechanism Involving DNA Damage, Cell Cycle Changes, and Mitochondrial Permeabilization," Open Journal of Apoptosis, Vol. 2 No. 2, 2013, pp. 13-22. doi: 10.4236/ojapo.2013.22002.

References

[1] G. Cragg, G. I. Kingston and D. Newman, “Anticancer Agents from Natural Products,” 2nd Edition, CRC Press, Boca Raton, 2011.
[2] Y. Hitotsuyanagi, M. Fukuyo, K. Tsuda, M. Kobayashi, A. Ozeki, H. Itokawa and K. Takeya, “4-Aza-2,3-dehydro-4-deoxypodophyllotoxins: Simple Aza-Podophyllotoxin Analogues Possessing Potent Cytotoxicity,” Bioorganic & Medicinal Chemistry Letters, Vol. 10, No. 4, 2000, pp. 315-317. doi:10.1016/S0960-894X(99)00693-9
[3] Y. L. Zhang, X. Guo, Y. C. Cheng and K. H. Lee, “Antitumor agents. 148. Synthesis and Biological Evaluation of Novel 4Beta-Amino Derivatives of Etoposide with Better Pharmacological Profiles,” Journal of Medicinal Chemistry, Vol. 37, No. 4, 1994, pp. 446-452. doi:10.1021/jm00030a003
[4] S. Goodwin, A. F. Smith and E. C. Horning, “Alkaloids of Ochrosia elliptica Labill,” Journal of the American Chemical Society, Vol. 81, No. 8, 1959, pp. 1903-1908. doi:10.1021/ja01517a031
[5] A. K. Mukherjee, S. Basu, N. Sarkar and A. C. Ghosh. “Advances in Cancer Therapy with Plant Based Natural Products,” Current Medicinal Chemistry, Vol. 16, No. 7, 2005, pp. 789-795.
[6] P. L. Kuo, Y. L. Hsu, Y. C. Kuo, C. H. Chang and C. C. Lin, “The Anti-Proliferative Inhibition Ofellipticine in Human Breast MDA-MB-231 Cancer Cells Is through Cell Cycle Arrest and Apoptosis Induction,” Anticancer Drugs, Vol. 16 , No. 7, 2005 , pp. 789-795. doi:10.1097/01.cad.0000171768.36317.93
[7] S. K. Mantenan, S. D. Sharma and S. K. Katiyar, “Berberine Inhibits Growth, Induces G1 Arrest and Apoptosis in Human Epidermoid Carcinoma A431 Cells by Regulating Cdki-Cdk-Cyclin Cascade, Disruption of Mitochondrial Membrane Potential and Cleavage of Caspase 3 and PARP,” Oxford Journals, Vol. 27 , No. 10, 2006 , pp. 2018-2027. doi:10.1093/carcin/bgl043
[8] M. Stiborova, M. Rupertova, H. H. Schmeiser and E. Frei, “Molecular Mechanisms of Antineoplastic Action of an Anticancer Drug Ellipticine,” Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, Vol. 150 , No. 1, 2006 , pp. 13-23.
[9] O. Cox, H. Jackson, V. A. Vargas, A. Báez, J. I. Colón, B. C. González and M. de León, “Synthesis and Biological Activity of Benzothiazolo- and Benzoxazolo[3,2-a]quinolinium Salts,” Journal of Medicinal Chemistry, Vol. 25, No. 11, 1982, pp. 1378-1381. doi:10.1021/jm00353a020
[10] C. A. Casiano and A. Báez, “Effects of the Antitumor Drugs 3-Nitrobenzothiazolo[3,2-alpha]quinolinium and Fagaronine on Nucleic Acid and Protein Synthesis,” Biochemical Pharmacology, Vol. 35, No. 4, 1986, pp. 679-685. doi:10.1016/0006-2952(86)90367-9
[11] S. Mahata, A. C. Bharti, S. Shukla, A. Tyagi, S. A. Husain and B. C. Das, “Berberine Modulates AP-1 Activity to Suppress HPV Transcription and Downstream Signaling to Induce Growth Arrest and Apoptosis in Cervical Cancer Cells,” Molecular Cancer, Vol. 10, 2011, p. 39. doi:10.1186/1476-4598-10-39
[12] B. Zayas, J. Beyley, M. Terron, M. Cordero, W. Hernandez, A. E. Alegría and O. Cox, “Comparison of the Nucleic Acid Covalent Binding Capacity of Two Nitro-Substituted Benzazolo[3,2-a]quinolinium Salts upon Enzymatic Reduction,” Toxicology in Vitro, Vol. 21, No. 6, 2007, pp. 1155-1164.
[13] I. G. Colón, F. A. González, M. Cordero, B. Zayas, C. Velez, O. Cox, A. Kumar and A. E. Alegría, “Role of the Nitro Functionality in the DNA Binding of 3-Nitro-10-methylbenzothiazolo[3,2-a]quinolinium Chloride,” Chemical Research in Toxicology, Vol. 21, No. 9, 2008, pp. 1706-1715. doi:10.1021/tx800076c
[14] A. Baez, F. A. González, D. Vázquez and M. J. Waring, “Interaction between a 3-Nitrobenzothiazolo (3,2-a)quinolinium Antitumour Drug and Deoxyribonucleic Acid,” Biochemical Pharmacology, Vol. 32, No. 13, 1983, pp. 2089-2094. doi:10.1016/0006-2952(83)90431-8
[15] A. E. Alegria, O. Cox, V. Santiago, M. Colon, Z. Reyes, L. Zayas, L. A. Rivera and J. A. Dumas, “Reductive Activation of Benzazolo[3,2-a]quinolinium Chlorides,” Free Radical Biology Medicine, Vol. 15, No. 1, 1993, pp. 49-56. doi:10.1016/0891-5849(93)90124-D
[16] R. H. Shoemaker, “The NCI60 Human Tumour Cell Line Anticancer Drug Screen,” Nature Reviews Cancer, Vol. 6, No. 10, 2006, pp. 813-823.
[17] S. L. Holbeck, J. M. Collins and J. H. Doroshow, “Analysis of Food and Drug Administration-Approved Anticancer Agents in the NCI60 Panel of Human Tumor Cell Lines,” Molecular Cancer Therapeutics, Vol. 9, No. 5, 2010, pp. 1451-1460.
[18] A. I. Medvedev and V. V. Leshchenko, “Large-Scale Fragmentation of DNA and the Death of Tumor Cells by the Action of the Binary System Ascorbic Acid-Metallo-complexes of Cobalt in Vitro,” Tsitologiia, Vol. 54, No. 5, 2012, pp. 417-420.
[19] H. Bakshi, S. Sam, R. Rozati, P. Sultan, T. Islam, B. Rathore, Z. Lone, M. Sharma, J. Triphati and R. C. Saxena, “DNA Fragmentation and Cell Cycle Arrest: a Hallmark of Apoptosis Induced by Crocin from Kashmiri Saffron in a Human Pancreatic Cancer Cell Line,” Asian Pacific Journal of Cancer Prevention, Vol. 11, No. 3, 2010, pp. 675-679.
[20] L. Jacobs and R. DeMars, “Chemical Mutagenesis with Diploid Human Fibroblasts,” In: B. J. Kilbey, M. Legator, W. Nichols and C. Ramel, Eds., Handbook of Mutagenicity Test Procedures, Elsevier Science Publishers, Amsterdam, 1984, pp. 321-356.
[21] M. Moreno, “Toxicología Ambiental. Evaluación de Riesgo para la Salud Humana,” McGraw-Hill/Interamericana de Espana, Espana, 2003.
[22] N. Güngor, A. M. Knaapen, A. Munnia, M. Peluso, G. R. Haenen, R. K. Chiu, R. W. Godschalk and F. J. Van Schooten, “Genotoxic Effects of Neutrophils and Hypochlorous Acid,” Mutagenesis, Vol. 25, No. 2, 2010, pp. 149-154. doi:10.1093/mutage/gep053
[23] J. C. Martinou and R. J. Youle, “Mitochondria in Apoptosis: Bcl-2 Family Members and Mitochondrial Dynamics,” Developmental Cell, Vol. 21, No. 1, 2011, pp. 92-101.
[24] S. L. Spencer and P. K. Sorger, “Measuring and Modeling Apoptosis in Single Cells,” Cell, Vol. 144, No. 6, 2011, pp. 926-939.
[25] V. Kumar and S. V. Malhotra, “Study on the Potential Anti-Cancer Activity of Phosphonium and Ammonium-Based Ionic liquids,” Bioorganic & Medicinal Chemistry Letters, Vol. 19, No. 16, 2009, pp. 4643-4646.
[26] S. V. Malhotra and V. Kumar, “A Profile of the in Vitro Anti-Tumor Activity of Imidazolium-Based Ionic Liquids,” Bioorganic & Medicinal Chemistry Letters, Vol. 20, No. 2, 2010, pp. 581-585.
[27] M. Stiborová, J. Sejbal, L. Borek-Dohalská, D. Aimová, J. Poljaková, K. Forsterová, M. Rupertová, J. Wiesner, J. Hudecek, M. Wiessler and E. Frei, “The Anticancer Drug Ellipticine Forms Covalent DNA Adducts, Mediated by Human Cytochromes P450, through Metabolism to 13-Hydroxyellipticine and Ellipticine N2-Oxide,” Cancer Research, Vol. 64, No. 22, 2004, pp. 8374-8380.
[28] J. Poljaková, T. Eckschlager, J. Hrebacková, J. Hraběta and M. Stiborová, “The Comparison of Cytotoxicity of the Anticancer Drugs Doxorubicin and Ellipticine to Human Neuroblastoma Cells,” Interdisciplinary Toxicology, Vol. 1, No. 2, 2010, pp. 186-189. doi:10.2478/v10102-010-0036-9
[29] S. Tateishi, “A Novel Rad18 Ubiqitin Ligase-Mediated Pathway for Repair of Camptothecin-Induced DNA Damage,” Cell Cycle, Vol. 10, No. 13, 2011, pp. 2057-2058. doi:10.4161/cc.10.13.15840
[30] A. Y. Chen, P. M. Chen and Y. J. Chen, “DNA Topoisomerase I Drugs and Radiotherapy for Lung Cancer,” Journal of Thoracic Disease, Vol. 4, No. 4, 2012, pp. 390-397.
[31] G. Cragg, G. I. Kingston and D. Newman, “Anticancer Agents from Natural Products,” 2nd Edition, CRC Press, Boca Raton, 2011. doi:10.1201/b11185
[32] N. Wu, X. W. Wu, K. Agama, Y. Pommier, J. Du, D. Li, L. Q. Gu, Z. S. Huang and L. K. An, “A Novel DNA Topoisomerase I Inhibitor with Different Mechanism from Camptothecin Induces G2/M Phase Cell Cycle Arrest to K562 Cells,” Biochemistry, Vol. 49, No. 47, 2010, pp. 10131-10136. doi:10.1021/bi1009419
[33] A. Pozniak, L. Müller, M. Salgo, J. K. Jones, P. Larson and D. Tweats, “Elevated Ethyl Methanesulfonate (EMS) in Nelfinavir Mesylate (Viracept, Roche): Overview,” AIDS Research and Therapy, Vol. 6, 2009, p. 18. doi:10.1186/1742-6405-6-18
[34] M. Vayssier-Taussat, S. E. Kreps, C. Adrie, J. Dall’Ava, D. Christiani and B. S. Polla, “Mitochondrial Membrane Potential: A Novel Biomarker of Oxidative Environmental Stress,” Environmental Health Perspectives, Vol. 110, No. 3, 2002, pp. 301-305.
[35] G. Kroemer, L. Galluzzi and C. Brenner, “Mitochondrial Membrane Permeabilization in Cell Death,” Physiological reviews, Vol. 87, No. 1, 2007, pp. 99-163.
[36] M. Stiborová, J. Poljaková, E. Martínková, L. Borek-Dohalská, T. Eckschlager, R. Kizek, E. Frei, “Ellipticine Cytotoxicity to Cancer Cell Lines—A Comparative Study,” Interdisciplinary Toxicology, Vol. 4, No. 2, 2011, pp. 98-105. doi:10.2478/v10102-011-0017-7
[37] J. Y. Kim, S. G. Lee, J. Y. Chung, Y. J. Kim, J. E. Park, H. Koh, M. S. Han, Y. C. Park, Y. H. Yoo and J. M. Kim, “Ellipticine Induces Apoptosis in Human Endometrial Cancer Cells: The Potential Involvement of Reactive Oxygen Species and Mitogen-Activated Proteinkinases,” Toxicology, Vol. 289, No. 2-3, 2011, pp. 91-102.
[38] J. Nitiss, “Targeting DNA topoisomerase II in cancer chemotherapy,” Nature Reviews Cancer, Vol. 9, No. 5, 2009, pp. 338-350.
[39] M. G. Ferlin, C. Marzano, V. Gandin, S. Dall’Acqua and L. Via Dalla, “DNA Binding Ellipticine Analogues: Synthesis, Biological Evaluation, and Structure-Activity Relationships,” ChemMedChem, Vol. 4, No. 3, 2009, pp. 363-377. doi:10.1002/cmdc.200800368
[40] E. Martinkova, A. Maglott, D. Y. Leger, D. Bonnet, M. Stiborova, K. Takeda, S. Martin and M. Dontenwill, “Alpha5beta1 Integrin Antagonists Reduce Chemotherapy-Induced Premature Senescence and Facilitate Apoptosis in Human Glioblastoma Cells,” International Journal of Cancer, Vol. 127, No. 5, 2010, pp. 1240-1248. doi:10.1002/ijc.25187
[41] Y. C. Kuo, P. L. Kuo, Y. L. Hsu, C. Y. Cho and C. C. Lin, “Ellipticine Induces Apoptosis through P53-Dependent Pathway in Human Hepatocellular Carcinoma HepG2 Cells,” Life Sciences, Vol. 78, No. 22, 2006, pp. 2550-2557.
[42] C. Chilampalli, R. Guillermo, R. S. Kaushik, A. Young, G. Chandrasekher, H. Fahmy and C. Dwivedi, “Honokiol, a Chemopreventive Agent against Skin Cancer, Induces Cellcycle Arrest and Apoptosis in Human Epidermoid A431 Cells,” Experimental Biology and Medicine (Maywood), Vol. 236, No. 11, 2011, pp. 1351-1359. doi:10.1258/ebm.2011.011030
[43] S. M. Meeran and S. K. Katiyar, “Grape Seed Proanthocyanidins Promote Apoptosis in Human Epidermoid Carcinoma A431 Cells through Alterations in Cdki-Cdk-Cyclin Cascade, and Caspase-3 Activation via Loss of Mitochondrial Membrane Potential,” Experimental Dermatology, Vol. 16, No. 5, 2007, pp. 405-415. doi:10.1111/j.1600-0625.2007.00542.x
[44] C. J. Norbury and B. Zhivotovsky, “DNA Damage-Induced Apoptosis,” Oncogene, Vol. 23, No. 16, 2004, pp. 2797-2808.
[45] R. Tiwary, W. Yu, B. G. Sanders and K. Kline, “α-TEA Cooperates with Chemotherapeutic Agents to Induce Apoptosis of P53 Mutant, Triple-Negative Human Breast Cancer Cells via Activating P73,” Breast Cancer Research, Vol. 13, No. 1, 2011, p. R1. doi:10.1186/bcr2801
[46] C. Lu, W. Wang and W. S. El-Deiry, “Non-Genotoxic Anti-Neoplastic Effects Ofellipticine Derivative NSC176327 in P53-Deficient Human Colon Carcinoma Cellsinvolve Stimulation of P73,” Cancer Biology & Therapy, Vol. 7, No. 12, 2008, pp. 2039-2046. doi:10.4161/cbt.7.12.7461
[47] M. Hagg, M. Berndtsson, A. Mandic, R. Zhou, M. C. Shoshan and S. Linder, “Induction of Endoplasmic Reticulum Stress by Ellipticine Plant Alkaloids,” Molecular Cancer Therapeutics, Vol. 3, No. 4, 2004, pp. 489-497.
[48] T. Nakano, H. Watanabe, M. Ozeki, M. Asai, H. Katoh, H. Satoh and H. Hayashi, “Endoplasmic Reticulum Ca2+ Depletion Induces Endothelial Cell Apoptosis Independently of Caspase-12,” Cardiovascular Research, Vol. 69, No. 4, 2006, pp. 908-915. doi:10.1016/j.cardiores.2005.11.023
[49] W. X. Zong, C. Li, G. Hatzivassiliou, T. Lindsten, Q. C. Yu and J. Yuan, “Thompson CB. Bax and Bak Can Localize to the Endoplasmic Reticulum to Initiate Apoptosis,” The Journal of Cell Biology, Vol. 162, No. 1, 2003, pp. 59-69.
[50] D. R. Green and J. C. Reed, “Mitochondria and Apoptosis,” Science, Vol. 281, No. 5381, 1998, pp. 1309-1312.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.