Alumina/Iron Oxide Nano Composite for Cadmium Ions Removal from Aqueous Solutions

Abstract

Magnetic alumina nano composite (MANC) was prepared for combination of the adsorption features of nano activated alumina with the magnetic properties of iron oxides to produce a nano magnetic adsorbent, which can be separated from the medium by a simple magnetic process after adsorption. MANC was characterized using XRD, SEM, TEM, EDX and surface area (BET). Quantum design SQUID magnetometer was used to study the magnetic measurement. The present study was conducted to evaluate the feasibility of MANC for the removal of cadmium ions from aqueous solutions through batch adsorption technique. The effects of pH, adsorbent dose, temperature, contact time and initial Cd2+ concentration on cadmium ions adsorption were studied. Equilibrium data were fitted to Langmuir, Freundlich and Temkin isotherms. The equilibrium data were best represented by the Langmuir isotherm. The kinetic data were fitted to pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models, and it was found to follow closely the pseudo-second-order model. Thermodynamic parameters were calculated for the Cd2+ ion-MANC system and the positive value of Δshowed that the adsorption was endothermic in nature. Furthermore, a single-stage batch adsorber was designed for the removal of Cd2+ ions by MANC based on the equilibrium data obtained.

Share and Cite:

El-Latif, M. , Ibrahim, A. , Showman, M. and Hamide, R. (2013) Alumina/Iron Oxide Nano Composite for Cadmium Ions Removal from Aqueous Solutions. International Journal of Nonferrous Metallurgy, 2, 47-62. doi: 10.4236/ijnm.2013.22007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L.-G. Yan, X.-Q. Shan, B. Wen and G. Owensb, “Ad sorption of Cadmium onto Al13-Pillared Acid-Activated Montmorillonite,” Journal of Hazardous Materials, Vol. No. 1-3, 156, 2008, pp. 499-508. doi:10.1016/j.jhazmat.2007.12.045
[2] J. Wase and C. Forster, “Biosorbents for Metal Ions,” Taylor & Francis Inc., Bristol, 1997.
[3] E. W. Shin, K. G. Karthikeyan and M. A. Tshabalala, Adsorption Mechanism of Cadmium on Juniper Bark and Wood,” Bioresource Technology, Vol. 98, No. 3, 2007, pp. 588-594. doi:10.1016/j.biortech.2006.02.024
[4] ATSDR, “Toxicological Profile for Cadmium,” Agency for Toxic Substances and Disease Registry, Department of Health and Human Services, USA, 1999.
[5] V. K. Gupta, M. Gupta and S. Sharma, “Process Development for the Removal of Lead and Chromium from Aqueous Solutions Using Red Mud—An Aluminium Industry Waste,” Water Research, Vol. 35, No. 5, 2001, pp. 1125-1134. doi:10.1016/S0043-1354(00)00389-4
[6] S. J. T. Pollard, G. D. Fowler, C. J. Sollars and R. Perry, “Low-Cost Adsorbents for Waste and Wastewater Treatment,” Science of the Total Environment, Vol. 116, No. 1-2, 1992, pp. 31-52. doi:10.1016/0048-9697(92)90363-W
[7] E. Erdem, N. Karapinar and R Donat, “The Removal of Heavy Metal Cations by Natural Zeolites,” Journal of Colloid and Interface Science, Vol. 280, No. 2, 2004, pp. 309-314. doi:10.1016/j.jcis.2004.08.028
[8] O. Abollino, M. Aceto, M. Malandrino, C. Sarzanini and E. Mentatsi, “Adsorption of Heavy Metals on Na-Mont morillonite. Effect of pH and Organic Substances,” Water Research, Vol. 37, No. 7, 2003, pp. 1619-1627. doi:10.1016/S0043-1354(02)00524-9
[9] K. A. Matis, A. I. Zouboulis, G. P. Gallios, T. Erwe and C. Blocher, “Application of Flotation for the Separation of Metal-Loaded Zeolites,” Chemosphere, Vol. 55, No. 1, 2004, pp. 65-72. doi:10.1016/j.chemosphere.2003.11.030
[10] L. C. A. Oliveira, R. V. R. A. Rios, J. D. Fabris, K. Sapag, V. K. Garg and R. M. Lago, “Clay-Iron Oxide Magnetic Composites for the Adsorption of Contaminants in Water,” Applied Clay Science, Vol. 22, No. 4, 2003, pp. 169-177. doi:10.1016/S0169-1317(02)00156-4
[11] D. Zamboulis, S. I. Pataroudi, A. I. Zouboulis and K. A. Matis, “The Application of Sorptive Flotation for the Removal of Metal Ions,” Desalination, Vol. 162. No. 3, 2004, pp. 159-168. doi:10.1016/S0011-9164(04)00039-6
[12] F. Pagnanelli, F. Veglio and L. Toro, “Modelling of the Acid-Base Properties of Natural and Synthetic Adsorbent Materials Used for Heavy Metal Removal from Aqueous Solutions,” Chemospere, Vol. 54, No. 7, 2004, pp. 905-915. doi:10.1016/j.chemosphere.2003.09.003
[13] Y. Xu and L. Axe, “Synthesis and Characterization of Iron Oxide-Coated Silica and Its Effect on Metal Adsorption,” Journal of Colloid and Interface Science, Vol. 282, No. 1, 2005, pp. 11-19. doi:10.1016/j.jcis.2004.08.057
[14] S. E. Bailey, T. J. Olin, R. M. Bricka and D. D. Adrian, “A Review of Potentially Low-Cost Sorbents for Heavy Metals,” Water Research, Vol. 33, No. 11, 1999, pp. 2469-2479. doi:10.1016/S0043-1354(98)00475-8
[15] R. Ciccu, M. Ghiani, A. Serci, S. Fadda, R. Peretti and A. Zucca, “Heavy Metal Immobilization in the Mining-Contaminated Soils Using Various Industrial Wastes,” Minerals Engineering, Vol. 16, No. 3 , 2003, pp. 187-192. doi:10.1016/S0892-6875(03)00003-7
[16] S. V. Dimitrova and D. R. Mehandriev, “Lead Removal from Aqueous Solutions by Granulated Blast-Furnace Slag,” Water Research, Vol. 32, No. 11, 1998, pp. 3289-3292. doi:10.1016/S0043-1354(98)00119-5
[17] K. C. Sekhar, C. T. Kamala, N. S. Chary, A. R. K. Sastry, T. Nageswara Rao and M. Vairamani, “Removal of Lead from Aqueous Solutions Using an Immobilized Biomaterial Derived from a Plant Biomass,” Journal of Hazardous Materials, Vol. 108, No. 1-2, 2004, pp. 111-117.
[18] N. Chubar, J. R. Carvalho and M. J. N. Correia, “Cork Biomass as Biosorbent for Cu(II), Zn(II) and Ni(II),” Colloids Surfaces A: Physicochemical and Engineering Aspects, Vol. 230, No. 1, 2003, pp. 57-65. doi:10.1016/j.colsurfa.2003.09.014
[19] K. T. Park, V. K. Gupta, D. Mohan and S. Sharma, “Re moval of Chromium(VI) from Electroplating Industry Wastewater Using Bagasse Fly Ash—A Sugar Industry Waste Material,” The Environmentalist, Vol. 19, No. 2, 1999, pp. 129-136.
[20] M. A. Karakassides, D. Gournis, A. B. Bourlinos, P. N. Trikalitisb and T. Bakasc, “Magnetic Fe2O3-Al2O3 Composites Prepared by a Modified Wet Impregnation Method,” Journal of Materials Chemistry, Vol. 13, No. 4, 2003, pp. 871-876. doi:10.1039/b211330a
[21] C.-F. Changa, P.-H. Lin and W. Holl, “Aluminum-Type Superparamagnetic Adsorbents: Synthesis and Application on Fluoride Removal,” Colloids Surfaces A: Physicochemical and Engineering Aspects, Vol. 280, No. 3, 2006, pp. 194-202. doi:10.1016/j.colsurfa.2006.02.011
[22] L. M. Sheppard, “Ceramic Transactions,” In: K. Ishizaki, L. M. Sheppard, S. Okada, T. Hamasaki and B. Huybrechts, Eds., Porous Materials, American Ceramic Society, Westerville, 1993, p. 3.
[23] I. Nettleship, “Applications of Porous Ceramics,” Key Engineering Materials, Vol. 122-124, No. 1, 1996, pp. 305-324. doi:10.4028/www.scientific.net/KEM.122-124.305
[24] G. R. Doughty and D. Hind, “The Applications of Ion Conducting Ceramics,” Key Engineering Materials, Vol. 122-124, No. 1, 1996, pp. 145-162. doi:10.4028/www.scientific.net/KEM.122-124.145
[25] M. Schmidt and F. Schwertfeger, “Applications for Silica Aerogel Products,” Journal of Non-Crystalline, Vol. 225, No. 1, 1998, pp. 364-368. doi:10.1016/S0022-3093(98)00054-4
[26] L. Ji, J. Lin, K. Ltan and C. Zeng, “Synthesis of High Surface-Area Alumina Using Aluminum Tri-sec-butox ide-2,4-pentanedione-2-propanol-nitric Acid Precursors,” Journal of Material Chemistry, Vol. 12, No. 19, 2000, pp. 931-939.
[27] A. M. Ibrahim, M. M. Abd El-Latif and M. M. Mahmoud, “Synthesis and Characterization of Nanosize Cobalt Ferrite Prepared by Convenient Heating Polyol Method and Microwave Heating Technique,” Journal of Alloys and Compounds, Vol. 506, No. 1 , 2010, pp. 201-204. doi:10.1016/j.jallcom.2010.06.177
[28] C. N. Sawyer, P. L. McCarty and G. F. Parkin, “Chemis try of Environmental Engineering,” 5th Edition, McGraw Hill, New York, 2002.
[29] A. Denizli, G. Ozkan and M. Yakup Arica, “Preparation and Characterization of Magnetic Polymethylmethacry late Microbeads Carrying Ethylene Diamine for Removal of Cu(II), Cd(II), Pb(II), and Hg(II) from Aqueous Solutions,” Journal of Applied Polymer Science, Vol. 78, No. 3, 2000, pp. 81-89. doi:10.1002/1097-4628(20001003)78:1<81::AID-APP110>3.0.CO;2-J
[30] F. Y. Wang, H. Wang and J. W. Ma, “Adsorption of Cadmium(II) Ions from Aqueous Solution by a New Low Cost Adsorbent-Bamboo Charcoal,” Journal of Hazard ous Materials, Vol. 177, No. 1-3, 2010, pp. 300-306. doi:10.1016/j.jhazmat.2009.12.032
[31] C. Niu, W. Wu, Z. Wang, S. Li and J. Wang, “Adsorption of Heavy Metal Ions from Aqueous Solution by Cross linked Carboxymethyl Konjac Glucomannan,” Journal of Hazardous Materials, Vol. 141, No. 1, 2007, pp. 209-214. doi:10.1016/j.jhazmat.2006.06.114
[32] A. Akil, M. Mouflith and S. Sebti, “Removal of Heavy Metal Ions from Water by Using Calcined Phosphate as a New Adsorbent,” Journal of Hazardous Materials, Vol. 112, No. 2, 2004, pp. 183-190. doi:10.1016/j.jhazmat.2004.05.018
[33] G. Wulfsberg, “Principles of Descriptive Chemistry,” Brookes/Cole Publishing, Montery, 1987.
[34] N. Khalid, S. A. Chaudhri, M. M. Saeed and J. Ahmed, “Separation and Preconcentration of Lead and Cadmium with 4-(4-Chlorophenyl)-2-phenyl-5-thiazoleacetic Acid and Its Application in Soil and Seawater,” Separation Sci ence and Technology, Vol. 31, No. 2, 1996, pp. 229-239. doi:10.1080/01496399608000692
[35] S. Schiewer and B. Volesky, “Modeling of the Proton Metal Ion Exchange in Biosorption,” Environmental Science and Technology, Vol. 29, No. 12, 1995, pp. 3049-3058. doi:10.1021/es00012a024
[36] A. Shukla, Y. H. Zhang, P. Dubey, J. L. Margrave and S. S. Shukla, “The Role of Sawdust in the Removal of Un wanted Materials from Water,” Journal of Hazardous Materials, Vol. 95, No. 1-2, 2002, pp. 137-152. doi:10.1016/S0304-3894(02)00089-4
[37] N. N. Nassar, “Rapid Removal and Recovery of Pb(II) from Wastewater by Magnetic Nanoadsorbents,” Journal of Hazardous Materials, Vol. 184, No. 1-3, 2010, pp. 538-546. doi:10.1016/j.jhazmat.2010.08.069
[38] Y. H. Huang, C. L. Hsueh, C. P. Huang, L. C. Su and C. Y. Chen, “Adsorption Thermodynamic and Kinetic Stu dies of Pb(II) Removal from Water onto a Versatile Al2O3 Supported Iron Oxide,” Separation and Purification Technology, Vol. 55, No. 1, 2007, pp. 23-29. doi:10.1016/j.seppur.2006.10.023
[39] A. K. Bhattacharya, T. K. Naiya, S. N. Mandal and S. K. Das, “Adsorption, Kinetics and Equilibrium Studies on Removal of Cr(VI) from Aqueous Solutions Using Different Low-Cost Adsorbents,” Chemical Engineering Journal, Vol. 137, No. 3, 2008, pp. 529-554.
[40] I. A. W. Tan, A. L. Ahmad and B. H. Hameed, “Adsorption of Basic Dye on High-Surface-Area Activated Car bon Prepared from Coconut Husk: Equilibrium, Kinetic and Thermodynamic Studies,” Journal of Hazardous Materials, Vol. 154, No. 1-3 , 2008, pp. 337-346. doi:10.1016/j.jhazmat.2007.10.031
[41] I. Langmuir, “The Constitution and Fundamental Proper ties of Solids and Liquids,” Journal of American Chemical Society, Vol. 38, No. 11, 1916, pp. 2221-2295. doi:10.1021/ja02268a002
[42] M. M. Abd El-Latif and A. M. Ibrahim, “Removal of Reactive Dye from Aqueous Solutions by Adsorption onto Activated Carbons Prepared from Oak Sawdust,” Desalination and Water Treatment, Vol. 20, No. 1-3, 2010, pp. 102-113.
[43] H. M. F. Freundlich, “Ueber Die Adsorption in Loesun gen,” Zeitschrift für Physikalische Chemie (Leipzig), Vol. 57, No. A, 1907, pp. 385-470.
[44] M. M. Abd El-Latif and M. F. Elkady, “Equilibrium Isotherms for Harmful Ions Sorption Using Nano Zirconium Vanadate Ion Exchanger,” Desalination, Vol. 255, No.1-3, 2010, pp. 21-43. doi:10.1016/j.desal.2010.01.020
[45] M. J. Temkin and V. Pyzhev, “Kinetics of the Synthesis of Ammonia on Promoted Iron Catalysts,” Acta Physio chimica (URSSR), Vol. 12, 1940, pp. 327-356.
[46] R. Leyva-Ramos, L. A. Bernal-Jacome and I. Acosta-Rodriguez, “Adsorption of Cadmium(II) from Aqueous Solution on Natural and Oxidized Corncob,” Separation and purification Technology, Vol. 45, No. 1, 2005, pp. 41-49. doi:10.1016/j.seppur.2005.02.005
[47] A. H. Mahvi and L. Diels, “Biological Removal of Cadmium by Alcaligenes Eutrophus CH34,” International journal of Environmental Science andTechnology, Vol. 1, No. 3, 2004, pp. 199-204.
[48] A. H. Mahvi, J. Nouri, G. A. Omrani and F. Gholami, “Application of Platanus Orientalis Leaves in Removal of Cadmium from Aqueous Solution,” World Applied Sciences Journal, Vol. 2, No. 1, 2007, pp. 40-44.
[49] K. A. Bolton and L. J. Evans, “Cadmium Adsorption Capacity of Selected Ontario Soils,” Canadian Journal of Soil Science, Vol. 5, No. 3, 1996, pp. 183-189. doi:10.4141/cjss96-025
[50] P. Hanzlik, J. Jehlicka, Z. Weishauptova and O. Sebek, “Adsorption of Copper, Cadmium and Silver from Aqueous Solutions onto Natural Carbonaceous Materials,” Plant Soil Environmental, Vol. 50, No. 6, 2004, pp. 257-264.
[51] S. Lagergren, “About the Theory of So-Called Adsorption of Soluble Substances Zur Theorieder Sogenannten Ad sorption Geloster Stoffe,” Kungliga Svenska Vetenskap sakademiens Handlingar, Vol. 24, No. 4, 1898, pp. 1-39.
[52] Y. S. Ho, G. McKay, D. A. J. Wase and C. F. Foster, “Study of the Sorption of Divalent Metal Ions on to Peat,” Adsorption Science and Technology, Vol. 18, No. 7, 2000, pp. 639-650. doi:10.1260/0263617001493693
[53] S. H. Chien and W. R. Clayton, “Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils,” Soil Science Society America Journal, Vol. 44, No. 2, 1980, pp. 265-268. doi:10.2136/sssaj1980.03615995004400020013x
[54] D. L. Sparks, “Kinetics of Reaction in Pure and Mixed Systems,” In: D. L. Sparks, Ed., Soil Physical Chemistry, CRC Press, Boca Raton, 1986, pp. 83-145.
[55] J. Zeldowitsch, “über Den Mechanismus der Katalytischen Oxidation Von CO a MnO2,” URSS, Acta Physiochim, Vol. 1, No. 2, 1934, pp. 364-449.
[56] W. J. Weber and J. C. Morris, “Kinetics of Adsorption on Carbon from Solution,” Journal of the Sanitary Engineering Division American Society of Civil Engineering, Vol. 89, No. 2, 1963, pp. 31-60.
[57] K. Srinivasan, N. Balasubramanian and T. V. Ramakrishan, “Studies on Chromium Removal by Rice Husk Car bon,” Indian Journal Environment and Health, Vol. 30, No. 4, 1988, pp. 376-387.
[58] C. W. Cheung, J. F. Porter and G. Mckay, “Sorption Ki netic Analysis for the Removal of Cadmium Ions from Effluents Using Bone Char,” Water Research, Vol. 35, No. 3, 2001, pp. 605-612. doi:10.1016/S0043-1354(00)00306-7
[59] H. Teng and C. Hsieh, “Activation Energy for Oxygen Chemisorption on Carbon at Low Temperatures,” Indusstrial Engineering and Chemical Research, Vol. 38, No. 1, 1999, pp. 292-297. doi:10.1021/ie980107j
[60] K. Kannan and M. M. Sundaram, “Kinetics and Mechanism of Removal of Methylene Blue by Adsorption on Various Carbons—A Comparative Study,” Dyes Pigments, Vol. 51, No. 1, 2001, pp. 25-40. doi:10.1016/S0143-7208(01)00056-0
[61] C. L. Lu, J. G. Lv, L. Xu, X. F. Guo, W. H. Hou, Y. Hu and H. Huang, “Crystalline Nanotubes of γ-AlOOH and γ-Al2O3: Hydrothermal Synthesis, Formation Mechanism and Catalytic Performance,” Nanotechnology, Vol. 20, No. 2, 2009, pp. 1-6. doi:10.1088/0957-4484/20/21/215604
[62] J. M. Murray and J. G. Dillard, “The Oxidation of Cobalt(II) Adsorbed on Manganese Dioxide,” Geochima et Cosmochima Acta, Vol. 43, No. 2, 1979, pp. 781-787. doi:10.1016/0016-7037(79)90261-8
[63] M. G. Zuhra, M. I. Bhanger, A. Mubeena, N. T. Farah and R. M. Jamil, “Adsorption of Methyl Parathion Pesticide from Water Using Watermelon Peels as a Low Cost Adsorbent,” Chemical Engineering Journal, Vol. 138, No. 1-3, 2008, pp. 616-621. doi:10.1016/j.cej.2007.09.027
[64] M. Syed, I. Muhammad, G. Rana and K. Sadullah, “Effect of Ni2+ Loading on the Mechanism of Phosphate An ion Sorption by Iron Hydroxide,” Separation and Purification Technology, Vol. 59, No. 1, 2008, pp. 108-114. doi:10.1016/j.seppur.2007.05.033
[65] Y. Seki and K. Yurdakoc, “Adsorption of Promethazine Hydrochloride with KSF Montmorillonite,” Adsorption, Vol. 12, No. 1, 2006, pp. 89-100. doi:10.1007/s10450-006-0141-4
[66] Y. Yu, Y. Y. Zhuang and Z. H. Wang, “Adsorption of Water-Soluble Dye onto Functionalized Resin,” Journal of Colloid Interface Science, Vol. 242, No. 2, 2001, pp. 288-293. doi:10.1006/jcis.2001.7780
[67] N. Dizge, C. Aydiner, E. Demirbas, M. Kobya and S. Kara, “Adsorption of Reactive Dyes from Aqueous Solutions by Fly Ash: Kinetic and Equilibrium Studies,” Journal of Hazardous Materials, Vol. 150, No. 3, 2008, pp. 737-746. doi:10.1016/j.jhazmat.2007.05.027
[68] H. Oualid, S. Fethi, C. Mahdi and N. Emmanuel, “Sorption of Malachite Green by a Novel Sorbent, Dead Leaves of Plane Tree: Equilibrium and Kinetic Modeling,” Chemical Engineering Journal, Vol. 143, No. 1, 2008, pp. 73-84. doi:10.1016/j.cej.2007.12.018
[69] J. H. Noggle, “Physical Chemistry,” 3rd Edition, Vol. 11, Harper Collins Publishers, New York, 1996.
[70] W. Stumm and R. Wollast, “Coordination Chemistry of Weathering. Kinetics of the Surface Controlled Dissolution of Oxide Minerals,” Reviews of Geophysics, Vol. 28, No. 1, 1990, pp. 53-69. doi:10.1029/RG028i001p00053
[71] K. G. Scheckel and D. L. Sparks, “Temperature Effects on Nickel Sorption Kinetics at the Mineral-Water Inter face,” Soil Science Society of America Journal, Vol. 65, No. 3, 2001, pp. 719-728. doi:10.2136/sssaj2001.653719x
[72] M. M. Abd El-Latif, A. M. Ibrahim and M. F. El-Kady, “Adsorption Equilibrium, Kinetics and Thermodynamics of Methylene Blue from Aqueous Solutions Using Bio polymer Oak Sawdust Composite,” Journal of American Science, Vol. 6, No. 6, 2010, pp. 267-283.
[73] M. Alkan, B. Kalay, M. Dogan and O. Demirbas, “Re moval of Copper Ions from Aqueous Solutions by Kaolinite and Batch Design,” Journal of Hazardous Materials, Vol. 153, No. 1-2, 2008, pp. 867-876. doi:10.1016/j.jhazmat.2007.09.047
[74] B. H. Hameed, D. K. Mahmoud and A. L. Ahmad, “Sorption Equilibrium and Kinetics of Basic Dye from Aqueous Solution Using Banana Stalk Waste,” Journal of Hazardous Materials, Vol. 158, No. 2-3, 2008, pp. 499-506. doi:10.1016/j.jhazmat.2008.01.098

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.