Share This Article:

Cell based therapy aides in infection and inflammation resolution in the murine model of cystic fibrosis lung disease

Abstract Full-Text HTML XML Download Download as PDF (Size:2435KB) PP. 139-153
DOI: 10.4236/scd.2013.32019    4,378 Downloads   8,287 Views   Citations

ABSTRACT

Cystic fibrosis (CF) is a genetically inherited disease which is characterized by excessive inflammation and inability to resolve infection with pathogens such as Pseudomonas aeruginosa. Treatment options have improved with correctors and potentiators, but a cure remains elusive. Human mesenchymal stem cells (hMSCs) have the potential to be both anti-inflammatory and anti-microbial, which makes them ideal candidates for exploration as an innovative new therapeutic for CF. Using a sublethal CF mouse model of chronic Pseudomonas aeruginosa infection, we show that hMSCs and wild type bone marrow derived macrophages (BMM) have the capacity to attenuate inflammation while at the same time improving the ability to resolve infection. Animals infected with bacteria and treated with hMSCs and BMM had less weight lost, decreased pro-inflammatory cytokines, decreased severity of gross lung pathology as well as clinical score. Importantly, even though the inflammation was decreased in vivo, both BMM and hMSC treatment resulted in significant decrease in lung bacterial load. The improvement in the CF model was consistent with hMSC induced anti-inflammatory and anti-microbial activity which may involve the cathelicidin LL-37. These studies suggest that both healthy MSCs and BMM may provide important new direction toward cell based therapies in CF.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Bonfield, T. , Lennon, D. , Ghosh, S. , DiMarino, A. , Weinberg, A. and Caplan, A. (2013) Cell based therapy aides in infection and inflammation resolution in the murine model of cystic fibrosis lung disease. Stem Cell Discovery, 3, 139-153. doi: 10.4236/scd.2013.32019.

References

[1] Nichols, D.P., Konstan, M.W. and Chmiel, J. F. (2008) Anti-inflammatory therapies for cystic fibrosis-related lung disease. Clinical Reviews in Allergy & Immunology, 35, 135-153. doi:10.1007/s12016-008-8081-2
[2] Chmiel, J.F. and Konstan, M.W. (2007) Inflammation and anti-inflammatory therapies for cystic fibrosis. Clinics in Chest Medicine, 28, 331-346. doi:10.1016/j.ccm.2007.02.002
[3] Mayer-Hamblett, N., Aitken, M.L., Accurso, F.J., Kronmal, R.A., Konstan, M.W., Burns, J.L., Sagel, S.D. and Ramsey, B.W. (2007) Association between pulmonary function and sputum biomarkers in cystic fibrosis. American Journal of Respiratory and Critical Care Medicine, 175, 822-828. doi:10.1164/rccm.200609-1354OC
[4] Caplan, A.I. (2009) Why are MSCs therapeutic? New data: New insight. The Journal of Pathology, 217, 318-324. doi:10.1002/path.2469
[5] Krasnodembskaya, A., Song, Y., Fang, X., Gupta, N., Serikov, V., Lee, J.W. and Matthay, M.A. (2010) Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells, 28, 2229-2238. doi:10.1002/stem.544
[6] Caplan, A.I. (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of Cellular Physiology, 213, 341-347. doi:10.1002/jcp.21200
[7] Dennis, J.E. and Caplan, A.I. (1996) Analysis of the developmental potential of conditionally immortal marrow-derived mesenchymal progenitor cells isolated from the H-2Kb-tsA58 transgenic mouse. Connective Tissue Research, 35, 93-99. doi:10.3109/03008209609029179
[8] Abdallah, B.M. and Kassem, M. (2007) Human mesenchymal stem cells: From basic biology to clinical applications. Gene Therapy, 15, 109-115. doi:10.1038/sj.gt.3303067
[9] Caplan, A.I. and Dennis, J.E. (2006) Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98, 1076-1084. doi:10.1002/jcb.20886
[10] Dennis, J.E., Cohen, N., Goldberg, V.M. and Caplan, A.I. (2004) Targeted delivery of progenitor cells for cartilage repair. Journal of Orthopaedic Research, 22, 735-741. doi:10.1016/j.orthres.2003.12.002
[11] Bruscia, E.M., Zhang, P.X., Ferreira, E., Caputo, C., Emerson, J.W., Tuck, D., Krause, D.S. and Egan, M.E. (2009) Macrophages directly contribute to the exaggerated inflammatory response in cystic fibrosis transmembrane conductance regulator-/- mice. American Journal of Respiratory Cell and Molecular Biology, 40, 295-304. doi:10.1165/rcmb.2008-0170OC
[12] Weiss, D.J., Berberich, M.A., Borok, Z., Gail, D.B., Kolls, J.K., Penland, C. and Prockop, D.J. (2006) Adult stem cells, lung biology, and lung disease. NHLBI/Cystic Fibrosis Foundation Workshop. Proceedings of the American Thoracic Society, 3, 193-207. doi:10.1513/pats.200601-013MS
[13] Van Heeckeren, A.M., Schluchter, M.D., Xue, W. and Davis, P.B. (2006) Response to acute lung infection with mucoid Pseudomonas aeruginosa in cystic fibrosis mice. American Journal of Respiratory and Critical Care Medicine, 173, 288-296. doi:10.1164/rccm.200506-917OC
[14] Van Heeckeren, A.M., Tscheikuna, J., Walenga, R.W., Konstan, M.W., Davis, P.B., Erokwu, B., Haxhiu, M.A. and Ferkol, T.W. (2000) Effect of Pseudomonas infection on weight loss, lung mechanics, and cytokines in mice. American Journal of Respiratory and Critical Care Medicine, 161, 271-279. doi:10.1164/ajrccm.161.1.9903019
[15] Bonfield, T.L., Thomassen, M.J., Farver, C.F., Abraham, S., Koloze, M.T., Zhang, X., Mosser, D.M. and Culver, D.A. (2008) Peroxisome proliferator-activated receptorgamma regulates the expression of alveolar macrophage macrophage colony-stimulating factor. The Journal of Immunology, 181, 235-242.
[16] Bonfield, T.L., Farver, C.F., Barna, B.P., Malur, A., Abraham, S., Raychaudhuri, B., Kavuru, M.S. and Thomassen, M.J. (2003) PPARg is deficient in alveolar macrophages from patients with alveolar proteinosis. American Journal of Respiratory and Critical Care Medicine, 29, 677-682. doi:10.1165/rcmb.2003-0148OC
[17] Lennon, D.P. and Caplan, A.I. (2006) Isolation of human marrow-derived mesenchymal stem cells. Experimental Hematology, 34, 1604-1605. doi:10.1016/j.exphem.2006.07.014
[18] Dennis, J.E., Haynesworth, S.E., Young, R.G. and Caplan, A.I. (1992) Osteogenesis in marrow-derived mesenchymal cell porous ceramic composites transplanted subcutaneously: Effect of fibronectin and laminin on cell retention and rate of osteogenic expression. Cell Transplantation, 1, 23-32.
[19] Mori, S., Yoshikawa, N., Tokoro, T., Ikehara, S., Inoue, Y., Nishikawa, M. and Inada, M. (1996) Studies of retroorbital tissue xenografts from patients with Graves’ ophthalmopathy in severe combined immunodeficient (SCID) mice: Detection of thyroid-stimulating antibody. Thyroid, 6, 275-281. doi:10.1089/thy.1996.6.275
[20] Abdallah, B.M. and Kassem, M. (2008) Human mesenchymal stem cells: From basic biology to clinical applications. Gene Therapy, 15, 109-116. doi:10.1038/sj.gt.3303067
[21] Bonfield, T.L., John, N., Barna, B.P., Kavuru, M.S., Thomassen, M.J. and Yen-Lieberman, B. (2005) Multiplexed particle-based anti-granulocyte macrophage colony stimulating factor (GM-CSF) assay: A pulmonary diagnostic test. Clinical and Diagnostic Laboratory Immunology, 12, 821-824
[22] Kube, D., Sontich, U., Fletcher, D. and Davis, P.B. (2001) Proinflammatory cytokine responses to P. aeruginosa infection in human airway epithelial cell lines. American Journal of Physiology—Lung Cellular and Molecular Physiology, 280, L493-L502.
[23] Zeitlin, P.L., Lu, L., Rhim, J., Cutting, G., Stetten, G., Kieffer, K.A., Craig, R. and Guggino, W.B. (1991) A cystic fibrosis bronchial epithelial cell line: Immortalization by adeno-12-SV40 infection. American Journal of Respiratory Cell and Molecular Biology, 4, 313-319. doi:10.1165/ajrcmb/4.4.313
[24] Bonfield, T.L., Hodges, C.A., Cotton, C.U. and Drumm, M.L. (2012) Absence of the cystic fibrosis transmembrane regulator (Cftr) from myeloid-derived cells slows resolution of inflammation and infection. Journal of Leukocyte Biology, 92, 1111-1122.
[25] Bonfield, T.L., John, N., Malur, A., Barna, B.P., Culver, D.A., Kavuru, M.S. and Thomassen, M.J. (2005) Elevated monocyte chemotactic proteins 1, 2, and 3 in pulmonary alveolar proteinosis are associated with chemokine receptor suppression. Clinical Immunology, 114, 79-85. doi:10.1016/j.clim.2004.09.004
[26] Hodges, C.A., Cotton, C.U., Palmert, M.R. and Drumm, M.L. (2008) Generation of a conditional null allele for Cftr in mice. Genesis, 46, 546-552. doi:10.1002/dvg.20433
[27] Van Heeckeren, A.M. and Schluchter, M.D. (2002) Murine models of chronic Pseudomonas aeruginosa lung infection. Lab Animal, 36, 291-312. doi:10.1258/002367702320162405
[28] Bokarewa, M., Nagaev, I., Dahlberg, L., Smith, U. and Tarkowski, A. (2005) Resistin, an adipokine with potent proinflammatory properties. The Journal of Immunology, 174, 5789-5795.
[29] Stutz, A.M., Pickart, L.A., Trifilieff, A., Baumruker, T., Prieschl-Strassmayr, E. and Woisetschlager, M. (2003) The Th2 cell cytokines IL-4 and IL-13 regulate found in inflammatory zone 1/resistin-like molecule a gene expression by a STAT6 and CCAAT/enhancer-binding protein-dependent mechanism. The Journal of Immunology, 170, 1789-1796.
[30] Capelli, A., Di Stefano, A., Lusuardi, M., Gnemmi, I. and Donner, C.F. (2002) Increased macrophage inflammatory protein-1a and macrophage inflammatory protein-1B levels in bronchoalveolar lavage fluid of patients affected by different stages of pulmonary sarcoidosis. American Journal of Respiratory and Critical Care Medicine, 165, 236-241. doi:10.1164/ajrccm.165.2.2106084
[31] Brown, K.L., Poon, G.F., Birkenhead, D., Pena, O.M., Falsafi, R., Dahlgren, C., Karlsson, A., Bylund, J., Hancock, R. E. and Johnson, P. (2011) Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses. The Journal of Immunology, 186, 5497-5505. doi:10.4049/jimmunol.1002508
[32] Cott, A., Weldon, S., Buchanan, P.J., Schock, B., Ernst, R.K., McAuley, D.F., Tunney, M.M., Irwin, C.R., Elborn, J.S. and Taggart, C.C. (2011) Evaluation of the ability of LL-37 to neutralise LPS in vitro and ex vivo. PLoS One, 6, e26525.
[33] Dennis, J.E. and Caplan, A.I. (1996) Differentiation potential of conditionally immortalized mesenchymal progenitor cells from adult marrow of a H-2Kb-tsA58 transgenic mouse. Journal of Cellular Physiology, 167, 523-538. doi:10.1002/(SICI)1097-4652(199606)167:3<523::AID-JCP16>3.0.CO;2-4
[34] Hodges, C.A., Grady, B.R., Mishra, K., Cotton, C.U. and Drumm, M.L. (2011) Cystic Fibrosis growth retardation is not correlated with loss of Cftr in the intestinal epithelium. American Journal of Physiology—Gastrointestinal and Liver Physiology, 301, G528-G536. doi:10.1152/ajpgi.00052.2011
[35] Fang, X., Song, Y., Hirsch, J., Galietta, L.J., Pedemonte, N., Zemans, R.L., Dolganov, G., Verkman, A.S. and Matthay, M.A. (2006) Contribution of CFTR to apical-basolateral fluid transport in cultured human alveolar epithetlial type II cells. American Journal of Physiology—Lung Cellular and Molecular Physiology, 290, L242-L249. doi:10.1152/ajplung.00178.2005
[36] Nichols, D., Chmiel, J. and Berger, M. (2008) Chronic inflammation in the cystic fibrosis lung: Alterations in inter- and intracellular signaling. Clinical Reviews in Allergy & Immunology, 34, 146-162. doi:10.1007/s12016-007-8039-9
[37] Witko-Sarsat, V., Sermet-Gaudelus, I., Lenoir, G. and Descamps-Latscha, B. (1999) Inflammation and CFTR: Might neutrophils be the key in cystic fibrosis? Mediators of Inflammation, 8, 7-11. doi:10.1080/09629359990658
[38] Sagel, S.D., Chmiel, J.F. and Konstan, M.W. (2007) Sputum biomarkers of inflammation in cystic fibrosis lung disease. Proceedings of the American Thoracic Society, 4, 406-417. doi:10.1513/pats.200703-044BR
[39] Chmiel, J.F., Berger, M. and Konstan, M.W. (2002) The role of inflammation in the pathophysiology of CF lung disease. Clinical Reviews in Allergy & Immunology, 23, 5-27. doi:10.1385/CRIAI:23:1:005
[40] Konstan, M.W., VanDevanter, D.R., Rasouliyan, L., Pasta, D.J., Yegin, A., Morgan, W.J. and Wagener, J.S. (2010) Trends in the use of routine therapies in cystic fibrosis: 1995-2005. Pediatric Pulmonology, 45, 1167-1172. doi:10.1002/ppul.21315
[41] Meyerholz, D.K., Stoltz, D.A., Namati, E., Ramachandran, S., Pezzulo, A.A., Smith, A.R., Rector, M.V., Suter, M.J., Kao, S., McLennan, G., Tearney, G.J., Zabner, J., McCray Jr., P.B. and Welsh, M.J. (2010) Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children. American Journal of Respiratory and Critical Care Medicine, 182, 1251-1261. doi:10.1164/rccm.201004-0643OC
[42] Bruscia, E.M., Price, J.E., Cheng, E.C., Weiner, S., Caputo, C., Ferreira, E.C., Egan, M.E. and Krause, D.S. (2006) Assessment of cystic fibrosis transmembrane conductance regulator (CFTR) activity in CFTR-null mice after bone marrow transplantation. Proceedings of the National Academy of Sciences of the United States of America, 103, 2965-2970. doi:10.1073/pnas.0510758103
[43] Bonfield, T.L., Koloze, M., Lennon, D.P., Zuchowski, B., Yang, S.E. and Caplan, A.I. (2010) Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. American Journal of Physiology: Lung Cellular and Molecular Physiology, 299, L760-L770. doi:10.1152/ajplung.00182.2009
[44] Bonfield, T.L., Nolan Koloze, M.T., Lennon, D.P. and Caplan, A.I. (2010) Defining human mesenchymal stem cell efficacy in vivo. Journal of Inflammation (London), 7, 51. doi:10.1186/1476-9255-7-51
[45] Matthay, M.A. (2010) Advances and challenges in translating stem cell therapies for clinical diseases. Translational Research, 156, 107-111. doi:10.1016/j.trsl.2010.07.007
[46] Matthay, M.A. (2009) Mesenchymally “stemming” angiogenesis. Blood, 113, 4131-4132. doi:10.1182/blood-2009-01-195396
[47] Matthay, M.A., Thompson, B.T., Read, E.J., McKenna Jr., D.H., Liu, K.D., Calfee, C.S. and Lee, J.W. (2010) Therapeutic potential of mesenchymal stem cells for severe acute lung injury. Chest, 138, 965-972. doi:10.1378/chest.10-0518
[48] Mei, S.H., Haitsma, J.J., Dos Santos, C.C., Deng, Y., Lai, P.F., Slutsky, A.S., Liles, W.C. and Stewart, D.J. (2010) Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. American Journal of Respiratory and Critical Care Medicine, 182, 1047-1057. doi:10.1164/rccm.201001-0010OC
[49] Bonfield, T.L., Panuska, J.R., Hilliard, K.A., Hilliard, J.B., Ghnaim, H. and Berger, M. (1995) Inflammatory cytokines in cystic fibrosis lungs. American Journal of Respiratory and Critical Care Medicine, 152, 2111-2118. doi:10.1164/ajrccm.152.6.8520783
[50] Chmiel, J.F., Konstan, M.W., Knesebeck, J.E., Hilliard, J.B., Bonfield, T.L., Dawson, D.V. and Berger, M. (1999) IL-10 attenuates excessive inflammation in chronic pseudomonas infection in mice. American Journal of Respiratory and Critical Care Medicine, 160, 2040-2047. doi:10.1164/ajrccm.160.6.9901043
[51] Nemeth, K., Keane-Myers, A., Brown, J.M., Metcalfe, D.D., Gorham, J.D., Bundoc, V.G., Hodges, M.G., Jelinek, I., Madala, S., Karpati, S. and Mezey, E. (2010) Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. Proceedings of the National Academy of Sciences of the United States of America, 107, 5652-5657. doi:10.1073/pnas.0910720107
[52] Yagi, H., Soto-Gutierrez, A., Parekkadan, B., Kitagawa, Y., Tompkins, R.G., Kobayashi, N. and Yarmush, M.L. (2010) Mesenchymal stem cells: Mechanisms of immunomodulation and homing. Cell Transplantation, 19, 667-679. doi:10.3727/096368910X508762
[53] Matthay, M.A., Goolaerts, A., Howard, J.P. and Lee, J.W. (2010) Mesenchymal stem cells for acute lung injury: Preclinical evidence. Critical Care Medicine, 38, S569-S573. doi:10.1097/CCM.0b013e3181f1ff1d
[54] Chen, C.I., Schaller-Bals, S., Paul, K.P., Wahn, U. and Bals, R. (2004) Beta-defensins and LL-37 in bronchialveolar lavage fluid of patients with cystic fibrosis. Journal of Cystic Fibrosis, 3, 45-50. doi:10.1016/j.jcf.2003.12.008
[55] Rigo, I., McMahon, L., Dhawan, P., Christakos, S., Yim, S., Ryan, L.K. and Diamond, G. (2012) Induction of triggering receptor expressed on myeloid cells (TREM-1) in airway epithelial cells by 1,25(OH)(2) vitamin D(3). Innate Immunity, 18, 250-257.
[56] Golec, M. (2007) Cathelicidin LL-37: LPS-neutralizing, pleiotropic peptide. Annals of Agricultural and Environmental Medicine, 14, 1-4.
[57] Desgranges, S., Le, P.F., Daly, A., Lydon, J., Brennan, M., Rai, D.K., Subasinghage, A.P., Hewage, C.M., Cryan, S.A., Greene, C., McElvaney, N.G., Smyth, T.P., Fitzgerald-Hughes, D., Humphreys, H. and Devocelle, M. (2011) In vitro activities of synthetic host defense propeptides processed by neutrophil elastase against cystic fibrosis pathogens. Antimicrobial Agents and Chemotherapy, 55, 2487-2489. doi:10.1128/AAC.01384-10
[58] Bergsson, G., Reeves, E.P., McNally, P., Chotirmall, S.H., Greene, C.M., Greally, P., Murphy, P., O’Neill, S.J. and McElvaney, N.G. (2009) LL-37 complexation with glycosaminoglycans in cystic fibrosis lungs inhibits antimicrobial activity, which can be restored by hypertonic saline. The Journal of Immunology, 183, 543-551. doi:10.4049/jimmunol.0803959
[59] Bucki, R., Byfield, F.J. and Janmey, P.A. (2007) Release of the antimicrobial peptide LL-37 from DNA/F-actin bundles in cystic fibrosis sputum. European Respiratory Journal, 29, 624-632. doi:10.1183/09031936.00080806
[60] Bruscia, E.M., Zhang, P.X., Ferreira, E., Caputo, C., Emerson, J.W., Tuck, D., Krause, D.S. and Egan, M.E. (2009) Macrophages directly contribute to the exaggerated inflammatory response in cystic fibrosis transmembrane conductance regulator-/- mice. American Journal of Respiratory Cell and Molecular Biology, 40, 295-304. doi:10.1165/rcmb.2008-0170OC
[61] Matthay, M.A. (2008) Treatment of acute lung injury: Clinical and experimental studies. Proceedings of the American Thoracic Society, 5, 297-299. doi:10.1513/pats.200708-141DR

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.