Induction of Cytochrome P450 2A6 by Bilirubin in Human Hepatocytes

Abstract

The influence of bilirubin on mRNA expression of cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT) and nuclear receptors in human hepatocytes was investigated. The treatment of the hepatocytes with 40 μg/mL bilirubin, which corresponds to hyperbilirubinemia, resulted in 1.7-fold increase of CYP2A6 mRNA compared to the vehicle control while CYP2A6 mRNA did not change after treatment with 1 μg/mL bilirubin, corresponding to physiologically normal level. No significant change of mRNA expression by 40 μg/mL bilirubin treatment was observed for CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4 and CYP3A5, UGT1A1, UGT1A3, UGT1A6, UGT2B4, UGT2B7, UGT2B10 and UGT2B15, constitutive androstane receptor (CAR), pregnane X receptor (PXR), retinoid X receptor α (RXRα) and hepatocyte nuclear factor-4α (HNF-4α). The induction profile of bilirubin was different from that of rifampicin, a typical PXR activator. This study demonstrated that CYP2A6 can be induced by bilirubin in a concentration dependent manner.

Share and Cite:

H. Tanii, Y. Shitara, M. Torii, S. Sekine, H. Iwata and T. Horie, "Induction of Cytochrome P450 2A6 by Bilirubin in Human Hepatocytes," Pharmacology & Pharmacy, Vol. 4 No. 2, 2013, pp. 182-190. doi: 10.4236/pp.2013.42026.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. M. Baciewicz, C. R. Chrisman, C. K. Finch and T. H. Self, “Update on Rifampin and Rifabutin Drug Interactions,” American Journal of the Medical Sciences, Vol. 335, No. 2, 2008, pp. 126-136 doi:MAJ.0b013e31814a586a
[2] T. Shimada and Y. Fujii-Kuriyama, “Metabolic Activation of Polycyclic Aromatic Hydrocarbons to Carcinogens by Cytochromes P450 1A1 and 1B1,” Cancer Science, Vol. 95, No. 1, 2004, pp. 1-6. doi:10.1111/j.1349-7006.2004.tb03162.x
[3] B. T. Zhu, “On the General Mechanism of Selective Induction of Cytochrome P450 Enzymes by Chemicals: Some Theoretical Considerations,” Expert Opinion on Drug Metabolism & Toxicology, Vol. 6, No. 4, 2010, pp. 483-494. doi:10.1517/17425250903578642
[4] L. M. Tompkins and A. D. Wallace, “Mechanisms of Cytochrome P450 Induction,” Journal of Biochemical & Molecular Toxicology, Vol. 21, No. 4, 2007, pp. 176-181. doi:10.1002/jbt.20180
[5] H. Tanii, Y. Shitara and T. Horie, “Population Pharmacokinetic Analysis of Letrozole in Japanese Postmenopausal Women,” European Journal of Clinical Pharmacology, Vol. 67, No. 10, 2011, pp. 1017-1025. doi:10.1007/s00228-011-1042-3
[6] C. U. Pfister, A. Martoni, C. Zamagni, G. Lelli, F. De Braud, C. Souppart, M. Duval and U. Hornberger, “Effect of Age and Single versus Multiple Dose Pharmacokinetics of Letrozole (Femara) in Breast Cancer Patients,” Biopharmaceutics & Drug Disposition, Vol. 22, No. 5, 2001, pp. 191-197. doi:10.1002/bdd.273
[7] K. Murai, H. Yamazaki, K. Nakagawa, R. Kawai and T. Kamataki, “Deactivation of Anti-Cancer Drug Letrozole to a Carbinol Metabolite by Polymorphic Cytochrome P450 2A6 in Human Liver Microsomes,” Xenobiotica, Vol. 39, No. 11, 2009, pp. 795-802. doi:10.3109/00498250903171395
[8] G. Luo, M. Cunningham, S. Kim, T. Burn, J. Lin, M. Sinz, G. Hamilton, et al., “CYP3A4 Induction by Drugs: Correlation between a Pregnane X Receptor Reporter Gene Assay and CYP3A4 Expression in Human Hepatocytes,” Drug Metabolism & Disposition, Vol. 30, No. 7, 2002, pp. 795-804. doi:10.1124/dmd.30.7.795
[9] D. Schuster and T. Langer, “The Identification of Ligand Features Essential for PXR activation by Pharmacophore Modeling,” Journal of Chemical Information & Modeling, Vol. 45, No. 2, 2005, pp. 431-439. doi:10.1021/ci049722q
[10] O. Trubetskoy, B. Marks, T. Zielinski, M. F. Yueh and J. Raucy, “A Simultaneous Assessment of CYP3A4 Metabolism and Induction in the DPX-2 Cell Line,” AAPS Journal, Vol. 7, No. 1, 2005, pp. 6-13. http://dx.doi.org/10.1208/aapsj070102
[11] R. Jover, R. Bort, M. J. Gomez-Lechon and J. V. Castell, “Cytochrome P450 Regulation by Hepatocyte Nuclear Factor 4 in Human Hepatocytes: A Study Using Adenovirus-Mediated Antisense Targeting,” Hepatology, Vol. 33, No. 3, 2001, pp. 668-675. doi:10.1053/jhep.2001.22176
[12] J. M. Pascussi, Z. Dvorak, S. Gerbal-Chaloin, E. Assenat, P. Maurel and M. J. Vilarem, “Pathophysiological Factors Affecting CAR Gene Expression,” Drug Metabolism Reviews, Vol. 35, No. 4, 2003, pp. 255-268. doi:10.1081/DMR-120026394
[13] 13. M. Pitarque, C. Rodriguez-Antona, M. Oscarson and M. Ingelman-Sundberg, “Transcriptional Regulation of the Human CYP2A6 Gene,” Journal of Pharmacology & Experimental Therapeutics, Vol. 313, No. 2, 2005, pp. 814-822. doi:10.1124/jpet.104.081570
[14] M. Itoh, M. Nakajima, E. Higashi, R. Yoshida, K. Nagata, Y. Yamazoe and T. Yokoi, “Induction of Human CYP2A6 Is Mediated by the Pregnane X Receptor with Peroxisome Proliferator-Activated Receptor-Gamma Coactivator 1α,” Journal of Pharmacology & Experimental Therapeutics, Vol. 319, No. 2, 2006, pp. 693-702. doi:10.1124/jpet.106.107573
[15] Y. Kamiyama, T. Matsubara, K. Yoshinari, K. Nagata, H. Kamimura and Y. Yamazoe, “Role of Human Hepatocyte Nuclear Factor 4α in the Expression of Drug-Metabolizing Enzymes and Transporters in Human Hepatocytes Assessed by Use of Small Interfering RNA,” Drug Metabolism & Pharmacokinetics, Vol. 22, No. 4, 2007, pp. 287-298. doi:10.2133/dmpk.22.287
[16] T. Onica, K. Nichols, M. Larin, L. Ng, A. Maslen, Z. Dvorak, J. M. Pascussi, M. J. Vilarem, P. Maurel and G. M. Kirby, “Dexamethasone-Mediated Up-Regulation of Human CYP2A6 Involves the Glucocorticoid Receptor and Increased Binding of Hepatic Nuclear Factor 4α to the Proximal Promoter,” Molecular Pharmacology, Vol. 73, No. 2, 2008, pp. 451-460. doi:10.1124/mol.107.039354
[17] A. di Masi, E. De Marinis, P. Ascenzi and M. Marino, “Nuclear Receptors CAR and PXR: Molecular, Functional, and Biomedical Aspects,” Molecular Aspects of Medicine, Vol. 30, No. 5, 2009, pp. 297-343. doi:10.1016/j.mam.2009.04.002
[18] A. Abu-Bakar, D. M. Arthur, A. S. Wikman, M. Rahnasto, R. O. Juvonen, J. Vepsalainen, H. Raunio, J. C. Ng and M. A. Lang, “Metabolism of Bilirubin by Human Cytochrome P450 2A6,” Toxicology & Applied Pharmacology, Vol. 261, No. 1, 2012, pp. 50-58. doi:10.1016/j.taap.2012.03.010
[19] H. H. Gerets, K. Tilmant, B. Gerin, H. Chanteux, B. O. Depelchin, S. Dhalluin and F. A. Atienzar, “Characterization of Primary Human Hepatocytes, HepG2 Cells, and HepaRG Cells at the mRNA Level and CYP Activity in Response to Inducers and Their Predictivity for the Detection of Human Hepatotoxins,” Cell Biology & Toxicology, Vol. 28, No. 2, 2012, pp. 69-87. doi:10.1007/s10565-011-9208-4
[20] W. M. Westerink and W. G. Schoonen, “Cytochrome P450 Enzyme Levels in HepG2 Cells and Cryopreserved Primary Human Hepatocytes and Their Induction in HepG2 Cells,” Toxicology in Vitro, Vol. 21, No. 8, 2007, pp. 1581-1591. doi:10.1016/j.tiv.2007.05.014
[21] J. M. Rae, M. D. Johnson, M. E. Lippman and D. A. Flockhart, “Rifampin Is a Selective, Pleiotropic Inducer of Drug Metabolism Genes in Human Hepatocytes: Studies with cDNA and Oligonucleotide Expression Arrays,” Journal of Pharmacology & Experimental Therapeutics, Vol. 299, No. 3, 2001, pp. 849-57.
[22] R. J. Edwards, R. J. Price, P. S. Watts, A. B. Renwick, J. M. Tredger, A. R. Boobis and B. G. Lake, “Induction of Cytochrome P450 Enzymes in Cultured Precision-Cut Human Liver Slices,” Drug Metabolism & Disposition, Vol. 31, No. 3, 2003, pp. 282-288. doi:10.1124/dmd.31.3.282
[23] A. Madan, R. A. Graham, K. M. Carroll, D. R. Mudra, L. A. Burton, L. A. Krueger, A. D. Downey, et al., “Effects of Prototypical Microsomal Enzyme Inducers on Cytochrome P450 Expression in Cultured Human Hepatocytes,” Drug Metabolism & Disposition, Vol. 31, No. 4, 2003, pp. 421-431. doi:10.1124/dmd.31.4.421
[24] B. Goodwin, L. B. Moore, C. M. Stoltz, D. D. McKee and S. A. Kliewer, “Regulation of the Human CYP2B6 Gene by the Nuclear Pregnane X Receptor,” Molecular Pharmacology, Vol. 60, No. 3, 2001, pp. 427-431.
[25] W. Xie, M. F. Yeuh, A. Radominska-Pandya, S. P. Saini, Y. Negishi, B. S.Bottroff, G. Y. Cabrera, R. H. Tukey and R. M. Evans, “Control of Steroid, Heme, and Carcinogen Metabolism by Nuclear Pregnane X Receptor and Constitutive Androstane Receptor,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 7, 2003, pp. 4150-4155. doi:10.1073/pnas.0438010100
[26] C. A. Vyhlidal, P. K. Rogan and J. S. Leeder, “Development and Refinement of Pregnane X Receptor (PXR) DNA Binding Site Model Using Information Theory: Insights into PXR-Mediated Gene Regulation,” Journal of Biological Chemistry, Vol. 279, No. 45, 2004, pp. 46779-46786. doi:10.1074/jbc.M408395200
[27] S. S. Ferguson, Y. Chen, E. L. LeCluyse, M. Negishi and J. A. Goldstein, “Human CYP2C8 Is Transcriptionally Regulated by the Nuclear Receptors Constitutive Androstane Receptor, Pregnane X Receptor, Glucocorticoid Receptor, and Hepatic Nuclear Factor 4α,” Molecular Pharmacology, Vol. 68, No. 3, 2005, pp. 747-757.
[28] W. Huang, J. Zhang, S. S. Chua, M. Qatanani, Y. Han, R. Granata and D. D. Moore, “Induction of Bilirubin Clearance by the Constitutive Androstane Receptor (CAR),” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 7, 2003, pp. 4156-4161. doi:10.1073/pnas.0630614100
[29] M. Wortham, M. Czerwinski, L. He, A Parkinson and Y. J. Wan, “Expression of Constitutive Androstane Receptor, Hepatic Nuclear Factor 4 Alpha, and P450 Oxidoreductase Genes Determines Interindividual Variability in Basal Expression and Activity of a Broad Scope of Xenobiotic Metabolism Genes in the Human Liver,” Drug Metabolism & Disposition, Vol. 35, No. 9, 2007, pp. 1700-1710. doi:10.1124/dmd.107.016436
[30] T. Sueyoshi, T. Kawamoto, I. Zelko, P. Honkakoski and M. Negishi, “The Repressed Nuclear Receptor CAR Responds to Phenobarbital in Activating the Human CYP2B6 Gene,” Journal of Biological Chemistry, Vol. 274, No. 10, 1999, pp. 6043-6046. doi:10.1074/jbc.274.10.6043
[31] H. Togawa, S. Shinkai and T. Mizutani, “Induction of Human UGT1A1 by Bilirubin through AhR Dependent Pathway,” Drug Metabolism Letters, Vol. 2, No. 4, 2008, pp. 231-237. doi:10.2174/187231208786734120
[32] L. P. Nguyen and C. A. Bradfield, “The Search for Endogenous Activators of the Aryl Hydrocarbon Receptor,” Chemical Research in Toxicology, Vol. 21, No. 1, 2008, pp. 102-116. doi:10.1021/tx7001965
[33] K. W. Bock and C. Kohle, “Contributions of the Ah Receptor to Bilirubin Homeostasis and Its Antioxidative and Atheroprotective Functions,” Biological Chemistry, Vol. 391, No. 6, 2010, pp. 645-653. doi:10.1515/bc.2010.065
[34] P. A. Münzel, S. Schmohl, F. Buckler, J. Jaehrling, F. T. Raschko, C. Kohle and K. W. Bock, “Contribution of the Ah Receptor to the Phenolic Antioxidant-Mediated Expression of Human and Rat UDP-Glucuronosyltransferase UGT1A6 in Caco-2 and Rat Hepatoma 5L Cells,” Biochemical Pharmacology, Vol. 66, No. 5, 2003, pp. 841- 847. doi:10.1016/S0006-2952(03)00389-7
[35] M. Nakajima, Y. Kuroiwa and T. Yokoi, “Interindividual Differences in Nicotine Metabolism and Genetic Polymorphisms of Human CYP2A6,” Drug Metabolism Reviews, Vol. 34, No. 4, 2002, pp. 865-877. doi:10.1081/DMR-120015696
[36] S. Daigo, Y. Takahashi, M. Fujieda, N, Ariyoshi, H. Yamazaki, W. Koizumi, S. Tanabe, et al., “A Novel Mutant Allele of the CYP2A6 Gene (CYP2A6*11) Found in a Cancer Patient who Showed Poor Metabolic Phenotype towards Tegafur,” Pharmacogenetics, Vol. 12, No. 4, 2002, pp. 299-306. doi:10.1097/00008571-200206000-00005
[37] C. Xu, Y. S. Rao, B. Xu, E. Hoffmann, J. Jones, E. M. Sellers and R. F. Tyndale, “An in Vivo Pilot Study Characterizing the New CYP2A6*7, *8, and *10 Alleles,” Biochemical & Biophysical Research Communications, Vol. 290, No. 1, 2002, pp. 318-324. doi:10.1006/bbrc.2001.6209
[38] M. A. Gyamfi, M. Fujieda, K. Kiyotani, H. Yamazaki and T. Kamataki, “High Prevalence of Cytochrome P450 2A6*1A Alleles in a Black African Population of Ghana,” European Journal of Clinical Pharmacology, Vol. 60, No. 12, 2005, pp. 855-857. doi:10.1007/s00228-004-0854-9
[39] Y. Kaida, N. Inui, T. Suda, H. Nakamura, H. Watanabe and K. Chida, “The CYP2A6*4 Allele Is Determinant of S-1 Pharmacokinetics in Japanese Patients with Non- Small-Cell Lung Cancer,” Clinical Pharmacology & Therapeutics, Vol. 83, No. 4, 2008, pp. 589-94. doi:10.1038/sj.clpt.6100484
[40] Y. M. Di, V. D. Chow, L. P. Yang and S. F. Zhou, “Structure, Function, Regulation and Polymorphism of Human Cytochrome P450 2A6,” Current Drug Metabolism, Vol. 10, No. 7, 2009, pp. 754-780. doi:10.2174/138920009789895507

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.