Share This Article:

Advanced magnetic resonance imaging techniques in brain tumours surgical planning

Abstract Full-Text HTML XML Download Download as PDF (Size:421KB) PP. 403-417
DOI: 10.4236/jbise.2013.63A051    3,859 Downloads   6,584 Views   Citations

ABSTRACT

Morphological assessment using Computed Tomo-graphy (CT) or Magnetic Resonance Imaging (MRI) is still the workhorse of tumor detection and diagnosis. In particular, MRI provides detailed information about cerebral tumor anatomy, cellular metabolism and hemodynamic features, making it a fundamental tool for a correct diagnosis, treatment and monitoring of the disease. Various new functional imaging modalities assessing tissue microstructure and physiology have increased the scope of neuro imaging and raised expectations among clinicians. This article provides an overview of the most advanced MR imaging techniques (functional MRI, perfusion-weighted imaging, diffusion-weighted imaging and MR spectroscopy) now available for neurosurgical planning and their role in brain tumors assessment. Their pros and cons are analyzed in order to find out which one may be chosen as best diagnostic pre-surgical protocol. At the moment none of the single techniques can be considered the golden standard; only the integration of advanced and conventional MR imaging proves to be a reliable tool in the hands of the neuro-radiologist and neurosurgeon, thus maximazing tumor resection and function preservation.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Zoccatelli, G. , Alessandrini, F. , Beltramello, A. and Talacchi, A. (2013) Advanced magnetic resonance imaging techniques in brain tumours surgical planning. Journal of Biomedical Science and Engineering, 6, 403-417. doi: 10.4236/jbise.2013.63A051.

References

[1] Central brain tumor registry of the United States (2012) http://www.cbtrus.org
[2] Sunaert, S. (2006) Presurgical planning for tumor resectioning. Journal of Magnetic Resonance Imaging, 23, 887- 905. doi:10.1002/jmri.20582
[3] Westbrook, C. (2010) MRI at a glance. Wiley-Blackwell, Hoboken.
[4] Young, G.S. (2007) Advanced MRI of adult brain tumors. Neurologic Clinics, 25, 947-973. doi:10.1016/j.ncl.2007.07.010
[5] Haberg, A., Kvistad, K.A., Unsgard, G. and Haraldseth, O. (2004) Preoperative blood oxy-gen level-dependent functional magnetic resonance imaging in patients with pri- mary brain tumors: Clinical application and outcome. Neurosurgery, 54, 902-914. doi:10.1227/01.NEU.0000114510.05922.F8
[6] Petrella, J.R., Shah, L.M., Harris, K.M., et al. (2006) Preoperative functional MR imaging localization of language and motor areas: Effect on therapeutic decision making in patients with potentially resectable brain tumors. Radiology, 240, 793-802. doi:10.1148/radiol.2403051153
[7] Sunaert, S. (2006) Pre-surgical planning for tumor resectioning. Journal of Magnetic Resonance Imaging, 23, 887- 905. doi:10.1002/jmri.20582
[8] Haberg, A., Kvistad, K.A., Unsgard, G. and Haraldseth, O. (2004) Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with primary brain tumors: Clinical application and outcome. Neurosurgery, 54, 902-914. doi:10.1227/01.NEU.0000114510.05922.F8
[9] Rasmussen, Jr., I.A., Lindseth, F., Rygh, O.M., Berntsen, E.M., Selbekk, T., Xu, J., Nagelhus, H.T.A., Harg, E., Haberg, A. and Unsgaard (2007) Functional neuro-navigation combined G. with intra-operative 3D ultra-sound: Initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data. Acta Neurochir (Wien), 149, 365-378. doi:10.1007/s00701-006-1110-0
[10] Lee, C.C., Ward, H.A., Sharbrough, F.W., Meyer, F.B., Marsh, W.R., Raffel, C., So, E.L., Cascino, G.D., Shin, C., Xu, Y., Riederer, S.J. and Clifford, Jr., J.R. (1999) Assessment of functional MR Imaging in neurosurgical planning. Brain. American Journal of Neurora-diology, 20, 1511-1519.
[11] Stippich, C., Rapps, N., Drey-haupt, J., et al. (2007) Lo- calizing and lateralizing language in patients with brain tumors: Feasibility of routine preoperative functional MR imaging in 81 consecutive patients. Radiology, 243, 828- 836. doi:10.1148/radiol.2433060068
[12] Seghier, M.L., Lazeyras, F., Pegna, A.J., Zimine, I., Dela, V.J., Mayer, E., Annoni, J.M. and Khateb, A. (2001) fMRI on patients with lesions involving language areas: Implications for neurosurgery. NeuroImage, 13, 836. doi:10.1016/S1053-8119(01)92178-0
[13] Savoy, R.L. (2001) History and future directions of human brain mapping and functional neuroimaging. Acta Psychologica, 107, 9-42. doi:10.1016/S0001-6918(01)00018-X
[14] Atlas, S.W., Howard II, R.S., Maldijian, J, Alsop, D., Detre, J.A., Listerud, J., D’Esposito, M., Judy, K.D., Zager, E. and Stecker, M. (1996) Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: Findings and implications for clinical management. Neurosurgery, 38, 329-338. doi:10.1097/00006123-199602000-00019
[15] Briganti, C., Sestieri, P.A., Mattei, R., et al. (2012) Reorganization of functional connectivity of the language network in patients with brain gliomas. American Journal of Neuroradiology, 34, 1.
[16] Binder, J.R., Swanson, S.J., Hammeke, T.A., Morris, G.L., Mueller, W.M., Fischer, M., Benbadis, S., Frost, J.A., Rao, S.M. and Haughton, V.M. (1996) Determination of language dominance using functional MRI: A comparison with the Wada test. Neurology, 46, 978-984. doi:10.1212/WNL.46.4.978
[17] Knecht, S., Drager, B., Deppe, M., Lohmann, H., Floel, A., Ringelstein, E.B. and Henningsen, H. (2000) Handedness and hemispheric language dominance in healthy humans. Brain, 123, 2512-2518. doi:10.1093/brain/123.12.2512
[18] Chenevert, T.L., Sundgren, P.C. and Ross, B.D. (2006) Diffusion imaging: Insight to cell status and cytoarchitecture. Neuroimaging Clinics of North America, 16, 619- 632. doi:10.1016/j.nic.2006.06.005
[19] Pierpaoli, C. and Basser, P.J. (1996) Toward a quantitative assessment of diffusion anisotropy. Magnetic Resonance in Medicine, 36, 893-906. doi:10.1002/mrm.1910360612
[20] Basser, P.J. (1995) Infer-ring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR in Biomedicine, 8, 333-344. doi:10.1002/nbm.1940080707
[21] Murakami, R., Sugahara, T., Nakamura, H., et al. (2007) Malignant supratentorial astro-cytoma treated with post-operative radiation therapy: Prognostic value of pretreatment quantitative diffusion-weighted MR imaging. Radiology, 243, 493-499. doi:10.1148/radiol.2432060450
[22] Field, A.S., Alexander, A.L., Wu, Y.C., et al. (2004) Diffusion tensor eigenvector directional color imaging patterns in the evaluation of cerebral white matter tracts altered by tumor. Journal of Magnetic Resonance Imaging, 20, 555-562. doi:10.1002/jmri.20169
[23] Mori, S., Frederiksen, K., van Zijl, P.C., et al. (2002) Brain white matter anatomy of tumor patients evaluated with diffusion tensor imaging. Annals of Neurology, 51, 377-380. doi:10.1002/ana.10137
[24] Clark, C.A., Barrick, T.R., Murphy, M.M. and Bell, B.A. (2003) White matter fiber tracking in patients with space-occupying lesions of the brain: A new technique for neurosurgical planning? NeuroImage, 20, 1601-1608. doi:10.1016/j.neuroimage.2003.07.022
[25] Coenen, V.A., Krings, T., Mayfrank, L., Polin, R.S., Reinges, M.H., Thron, A. and Gilsbach, J.M. (2001) Three-dimensional visualization of the pyramidal tract in a neuronavigation system during brain tumor surgery: First experiences and technical note. Neurosurgery, 49, 86-93.
[26] Alexander, A.L., Badie, B. and Field, A.S. (2003) Diffusion tensor MRI depicts white matter reorganization after surgery. Proceedings of the ISMRM 11th Scientific Meeting, Berkeley, International Society of Magnetic Resonance in Medicine.
[27] Lu, S., Ahn, D., Johnson, G. and Cha, S. (2003) Peritu-moral diffusion tensor imaging of high grade gliomas and metastatic brain tumors. American Journal of Neurora-diology, 24, 937-941.
[28] Yamada, K., Kizu, O., Mori, S., et al. (2003) Brain fiber tracking with clinically feasible diffusion-tensor MR imaging: Initial experience. Radiology, 227, 295-301. doi:10.1148/radiol.2271020313
[29] Tropine, A., Vucurevic, G., Delani, P., et al. (2004) Contribution of diffusion tensor imaging to delineation of gliomas and glioblastomas. Journal of Magnetic Reso- nance Imaging, 20, 905-912. doi:10.1002/jmri.20217
[30] Morita, K., Matsuzawa, H., Fujii, Y., Tanaka, R., Kwee, I.L. and Nakada, T. (2005) Diffusion tensor analysis of peritumoral edema using lambda chart analysis indicative of the heterogeneity of the microstructure within edema. Journal of Neurosurgery, 102, 336-341. doi:10.3171/jns.2005.102.2.0336
[31] Nimsky, C., Ganslandt, O. and Fahlbusch, R. (2005) Intraoperative diffusion-tensor MR imaging: Shifting of white matter tracts during neurosurgical procedures—Initial experience. Radiology, 234, 218-225. doi:10.1148/radiol.2341031984
[32] Nimsky, C., Gaslandt, O., Merfhor, D., et al. (2006) Intra-operative visualization of pyramidal tract by diffusion- tensor-imaging-based fiber tracking. NeuroImage, 30, 1219- 1229. doi:10.1016/j.neuroimage.2005.11.001
[33] Lu, S., Ahn, D., Johnson, G., Law, M., Zagzag, D. and Grossman, R.I. (2004) Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: Introduction of the tumor infiltration index. Radiology, 232, 221-228. doi:10.1148/radiol.2321030653
[34] Kamada, K., Houkin, K., Takeuchi, F., Ishii, N., Ikeda, J., Sawamura, Y., Kuriki, S., Kawaguchi, H. and Iwasaki, Y. (2003) Visualization of the eloquent motor system by integration of MEG, functional, and anisotropic diffusion- weighted MRI in functional neuronavigation. Surgical Neurology, 59, 352-362. doi:10.1016/S0090-3019(03)00018-1
[35] Fan, G.G., Deng, Q.L., Wu, Z.H. and Guo, Q.Y. (2006) Usefulness of diffusion/perfusion-weighted MRI in patients with nonenhancing supratentorial brain gliomas: A valuable tool to predict tumour grading? British Journal of Radiology, 79, 652-658. doi:10.1259/bjr/25349497
[36] Law, M., Oh, S., Babb, J.S., et al. (2006) Low-grade gliomas: Dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging: Prediction of patient clinical response. Radiology, 238, 658-667. doi:10.1148/radiol.2382042180
[37] Roberts, H.C., Roberts, T.P., Bollen, A.W., Ley, S., Brasch, R.C. and Dillon, W.P. (2001) Correlation of microvascular permeability derived from dynamic contrast-enhanced MR imaging with histologic grade and tumor labeling index: A study in human brain tumors. Academic Radiology, 8, 384-391. doi:10.1016/S1076-6332(03)80545-7
[38] Provenzale, J.M., York, G., Moya, M.G., Parks, L., Choma, M., Kealey, S., Cole, P. and Serajuddin, H. (2006) Correlation of relative permeability and relative cerebral blood volume in high-grade cerebral neoplasms. American Journal of Roentgenology, 187, 1036-1042. doi:10.2214/AJR.04.0676
[39] Covarubbias, D.J., Rosen, B.R. and Lev, M.H. (2004) Dynamic magnetic resonance perfusion imaging of brain tumors. The Oncologist, 9, 528-537. doi:10.1634/theoncologist.9-5-528
[40] Sibtain, N.A., Howe, F.A. and Saunders, D.E. (2007) The clinical value of proton magnetic resonance spectroscopy in adult brain tumours. Clinical Radiology, 62, 109-111. doi:10.1016/j.crad.2006.09.012
[41] Vuori, K., Kankaanranta, L., H?kkinen, A.M., Gaily, E., et al. (2004) Low-Grade gliomas and focal cortical developmental malformations: Differentiation with proton MR spectroscopy. Radiology, 230, 703-708. doi:10.1148/radiol.2303021804
[42] Fan, G., Sun, B., Wu, Z., Guo, Q. and Guo, Y. (2004) In vivo single-voxel proton MR spectroscopy in the differentiation of high-grade gliomas and solitary metastases. Clinical Radiology, 59, 77-85. doi:10.1016/j.crad.2003.08.006
[43] Howe, F.A., Barton, S.J., Cudlip, S.A., et al. (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magnetic Resonance in Medicine, 49, 223-232. doi:10.1002/mrm.10367
[44] Law, M., Cha, S., Knopp, E.A., Johnson, G., Arnett, J. and Litt, A.W. (2002) High-grade gli-omas and solitary metastases: Differentiation by using perfusion and proton spectroscopic MR imaging. Radiology, 222, 715-721. doi:10.1148/radiol.2223010558
[45] Moller-Hartmann, W., Herminghaus, S., Krings, T., et al. (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology, 44, 371-381. doi:10.1007/s00234-001-0760-0
[46] Majos, C., Alonso, J., Aguilera, C., et al. (2003) Proton magnetic resonance spectroscopy ((1)H MRS) of human brain tumours: Assessment of differences between tumour types and its applicability in brain tumour categorization. European Radiology, 13, 582-591.
[47] Harting, I., Hartmann, M., Jost, G., et al. (2003) Differentiating primary central nervous system lymphoma from glioma in humans using localised proton magnetic resonance spectroscopy. Neuroscience Letters, 342, 163-166. doi:10.1016/S0304-3940(03)00272-6
[48] Castillo, M., Smith, J.K. and Kwock, L. (2000) Correlation of myo-inositol levels and grading of cerebral astro-cytomas. American Journal of Neuroradiology, 21, 1645- 1649.
[49] Galanaud, D., Nicoli, F., Chinot, O., et al. (2006) Nonin-vasive diagnostic assessment of brain tumors using combined in vivo MR imaging and spectroscopy. Magnetic Resonance in Medicine, 55, 1236-1245. doi:10.1002/mrm.20886
[50] Moller-Hartmann, W., Her-minghaus, S., Krings, T., et al. (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology, 44, 371-381. doi:10.1007/s00234-001-0760-0
[51] Stadlbauer, A., Gruber, S., Nimski, C., et al. (2006) Pre-operative grading of gliomas using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging. Radiology, 238, 958-969. doi:10.1148/radiol.2382041896

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.