Cross-modal connectivity of the secondary auditory cortex with higher visual area in the congenitally deaf—A case study

Abstract

It is well known that auditory cortical areas are activated by visual stimulation in the deaf. However, it is not known whether the information enters from the primary visual area or high-level visual areas. In this study, we used visual language stimulation to examine visual-auditory functional connectivity. For this, we used functional magnetic resonance imaging (fMRI) in a congenitally deaf subject to localize areas in the auditory cortex that showed cross-modal reorganization for the processing of visual language inputs and estimate areas in the visual ventral stream, from which language signal inputs enter the auditory areas in the congenitally deaf. We found that the anterior region of the secondary auditory cortex in the superior temporal gyrus showed language-specific activation and that the visual inputs into the area were from the fusiform gyrus, which is a high-level visual area.

Share and Cite:

Sung, Y. and Ogawa, S. (2013) Cross-modal connectivity of the secondary auditory cortex with higher visual area in the congenitally deaf—A case study. Journal of Biomedical Science and Engineering, 6, 314-318. doi: 10.4236/jbise.2013.63A040.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Pallas, S.L., Littman, T. and Moore, D.R. (1999) Cross-modal reorganization of callosal connectivity without altering thalamocortical projections. Proceedings of the National Academy of Sciences of USA, 96, 8751-8756. doi:10.1073/pnas.96.15.8751
[2] Finney, E.M., Fine, I. and Dobkins, K.R. (2001) Visual stimuli activate auditory cortex in the deaf. Nature Neuroscience, 4, 1171-1173. doi:10.1038/nn763
[3] Finney, E.M., Clementz, B.A., Hickok, G. and Dobkins, K.R. (2003) Visual stimuli activate auditory cortex in deaf subjects: Evidence from MEG. Neuroreport, 14, 1425-1427. doi:10.1097/00001756-200308060-00004
[4] Lee, H.J., Truy, E., Mamou, G., Sappey-Marinier, D. and Giraud, A.L. (2007) Visual speech circuits in profound acquired deafness: A possible role for latent multimodal connectivity. Brain, 130, 2929-2941. doi:10.1093/brain/awm230
[5] Lomber, S.G., Meredith, M.A. and Kral, A. (2010) Cross- modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nature Neuroscience, 13, 1421-1427. doi:10.1038/nn.2653
[6] Meredith, M.A., Kryklywy, J., McMillan, A.J., Malhotra, S., Lum-Tai, R. and Lomber, S.G. (2011) Crossmodal reorganization in the early deaf switches sensory, but not behavioral roles of auditory cortex. Proceedings of the National Academy of Sciences of USA, 108, 8856-8861. doi:10.1073/pnas.1018519108
[7] Lomber, S.G., Meredith, M.A. and Kral, A. (2011) Adaptive crossmodal plasticity in deaf auditory cortex: Areal and laminar contributions to supranormal vision in the deaf. Progress in Brain Research, 191, 251-270. doi:10.1016/B978-0-444-53752-2.00001-1
[8] Weisberg, J., Koo, D.S., Crain, K.L. and Eden, G.F. (2012) Cortical plasticity for visuospatial processing and object recognition in deaf and hearing signers. Neuroimage, 60, 661-672. doi:10.1016/j.neuroimage.2011.12.031
[9] Meredith, M.A., Keniston, L.P. and Allman, B.L. (2012) Multisensory dysfunction accompanies crossmodal plasticity following adult hearing impairment. Neuroscience, 214, 136-148. doi:10.1016/j.neuroscience.2012.04.001
[10] Karns, C.M., Dow, M.W. and Neville, H.J. (2012) Altered cross-modal processing in the primary auditory cortex of congenitally deaf adults: A visual-somatosensory fMRI study with a double-flash illusion. Journal of Neuroscience, 32, 9626-9638. doi:10.1523/JNEUROSCI.6488-11.2012
[11] Li, Y., Booth, J.R., Peng, D., Zang, Y., Li, J., Yan, C. and Ding, G. (in press) Altered intra- and inter-regional synchronization of superior temporal cortex in deaf people. Cerebral Cortex.
[12] Husain, F.T., Patkin, D.J., Kim, J., Braun, A.R. and Horwitz, B. (2012) Dissociating neural correlates of meaningful emblems from meaningless gestures in deaf signers and hearing non-signers. Brain Research, 1478, 24-35. doi:10.1016/j.brainres.2012.08.029
[13] Bear, M.F., Connors, B.W. and Pradiso, M.A. (1996) Neuroscience: Exploring the brain. Willams & Wilkins Ltd., Baltimore.
[14] Berstein L.E., Auer, E.T., Moore, J.K., Ponton, C.W., Don, M. and Singh M. (2002) Visual speech perception without primary auditory cortex activation. Neuroreport, 13, 311-315. doi:10.1097/00001756-200203040-00013
[15] McCandliss, B.D., Cohen, L. and Dehaene, S. (2003) The visual word form area: Expertise for reading in fusiform gyrus. Trends in Cognitive Sciences, 7, 293-299. doi:10.1016/S1364-6613(03)00134-7
[16] Buchweitz, A., Mason, R.A., Tomitch, L.M.B. and Just, M.A. (2009) Brain activation for reading and listening comprehension: An fMRI study of modality effects and individual differences in language comprehension. Psychology Neuroscience, 2, 111-123.
[17] Taylor, I. and Taylor, M.M. (1990) Psycholinguistics: Learning and using languages. Prentice-Hall Inc., Englewood Cliffs.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.