Share This Article:

Thermal influence of saliva secretion ex vivo in the mouse submandibular gland

Abstract Full-Text HTML XML Download Download as PDF (Size:772KB) PP. 83-88
DOI: 10.4236/ojst.2013.31015    4,413 Downloads   6,557 Views   Citations

ABSTRACT

The physiological and pharmacological responses of an ex vivo mouse submandibular gland were used to study fluid secretion and cell signaling in response to muscarinic stimulation at increasing temperatures. Saliva production at 37°C was 5.5-fold that at 25°C with pilocarpine stimulation and 9.8-fold that at 25°C with cevimeline stimulation. Both of these muscarinic agonists are used clinically. With the experimental agonist carbachol (CCh), saliva secretion was increased with an increase in temperature, but the CCh concentration producing the peak flow was the same in both dose-response curves, suggesting that the muscarinic receptor itself is not responsible for the temperature dependence. Purinergic agonists also induced temperature-dependent saliva production ex vivo. The calcium ionophore A23187 failed to have a significant effect on saliva production. The CCh-induced increase in intracellular Ca2+ also upregulated the initial increase and sustained the plateau phase of saliva flow. Thus, muscarinic receptor stimulation of saliva production is temperature sensitive due to an increase in intracellular Ca2+.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Mukaibo, T. , Nakamoto, T. , Kondo, Y. , Kidokoro, M. , Imamura, A. , Masaki, C. and Hosokawa, R. (2013) Thermal influence of saliva secretion ex vivo in the mouse submandibular gland. Open Journal of Stomatology, 3, 83-88. doi: 10.4236/ojst.2013.31015.

References

[1] Melvin, J.E., Yule, D., Shuttleworth, T., et al. (2005) Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annual Review of Physiology, 67, 445-469. doi:10.1146/annurev.physiol.67.041703.084745
[2] Roussa, E. (2011) Channels and transporters in salivary glands. Cell and Tissue Research, 343, 263-287. doi:10.1007/s00441-010-1089-y
[3] Nakamura, T., Matsui, M., Uchida, K., et al. (2004) M(3) muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. Journal of Physiology, 558, 561-575. doi:10.1113/jphysiol.2004.064626
[4] Berk, L. (2008) Systemic pilocarpine for treatment of xerostomia. Expert Opinion on Drug Metabolism & Toxicology, 4, 1333-1340. doi:10.1517/17425255.4.10.1333
[5] Braga, M.A., Tarzia, O., Bergamaschi, C.C., et al. (2009) Comparison of the effects of pilocarpine and cevimeline on salivary flow. International Journal of Dental Hygiene, 7, 126-130. doi:10.1111/j.1601-5037.2008.00326.x
[6] Lung, M.A. (1990) Variations in blood flow on mandibular glandular secretion to autonomic nervous stimulations in anaesthetized dogs. Journal of Physiology, 431, 479-493.
[7] Iwabuchi, Y., Aoki, C. and Masuhara, T. (1988) A comparative study of the effects of four choline esters on the secretion of fluid and glycoprotein from rat submandibular glands. Japanese Journal of Pharmacology, 48, 175-184. doi:10.1254/jjp.48.175
[8] Carswell, H., Galione, A.G. and Young, J.M. (1987) Differential effect of temperature on histamineand carbachol-stimulated inositol phospholipid breakdown in slices of guinea-pig cerebral cortex. British Journal Pharmacology, 90, 175-182. doi:10.1111/j.1476-5381.1987.tb16838.x
[9] Socha, M.J., Hakim, C.H., Jackson, W.F., et al. (2011) Temperature effects on morphological integrity and Ca2+ signaling in freshly isolated murine feed artery endothelial cell tubes. American Journal of Physiology Heart Circulatory Physiology, 301, H773-H783. doi:10.1152/ajpheart.00214.2011
[10] Kanosue K., Nakayama, T., Tanaka, H., et al. (1990) Modes of action of local hypothalamic and skin thermal stimulation on salivary secretion in rats. Journal of Physiology, 424, 459-471.
[11] Nakayama, T., Kanosue, K., Tanaka, H., et al. (1986) Thermally induced salivary secretion in anesthetized rats. Pflugers Archives European Journal of Physiology, 406, 351-355. doi:10.1007/BF00590935
[12] Nakamoto, T., Romanenko, V.G., Takahashi A., et al., (2008) Apical maxi-K (KCa1.1) channels mediate K+ secretion by the mouse submandibular exocrine gland. American Journal of Physiology Cellular Physiology, 294, C810-C819. doi:10.1152/ajpcell.00511.2007
[13] Romanenko, V.G., Nakamoto, T., Srivastava, A., et al. (2007) Regulation of membrane potential and fluid secretion by Ca2+-activated K+ channels in mouse submandibular glands. Journal of Physiology, 581, 801-817. doi:10.1113/jphysiol.2006.127498
[14] Kondo, Y., Nakamoto, T., Mukaibo, T., et al. (2011) Cevimeline-induced monophasic salivation from the mouse submandibular gland: Decreased Na+ content in saliva results from specific and early activation of Na+/H+ exchange. Journal of Pharmacology and Experimental Therapeutics, 337, 267-274. doi:10.1124/jpet.110.174946
[15] Nakamoto, T., Hirono, C., Sugita, M., et al. (2002) Forskolin-induced clearance of the fluorescent dye sulforhodamine from rat parotid intralobular duct lumen: Visualization of the secretory function under a confocal laser scaning microscope. Journal of Membrane Biology, 190, 189-196. doi:10.1007/s00232-002-1036-2
[16] Turner, J.T., Landon, L.A., Gibbons, S.J., et al. (1999) Salivary gland P2 nucleotide receptors. Critical Reviews in Oral Biology & Medicine, 10, 210-224. doi:10.1177/10454411990100020701
[17] Turner, J.T., Weisman, G.A., Landon, L.A., et al. (1998) Salivary gland nucleotide receptors: Evidence for functional expression of both P2X and P2Y subtypes. European Journal of Morphology, 36, 170-175.
[18] Nakamoto, T., Brown, D.A., Catalan, M.A., et al. (2009) Purinergic P2X7 receptors mediate ATP-induced saliva secretion by the mouse submandibular gland. Journal of Biological Chemistry, 284, 4815-4822. doi:10.1074/jbc.M808597200
[19] Montell, C. (2005) The TRP superfamily of cation channels. Science’s STKE: Signal transduction knowledge environment, 2005, 3.
[20] Nilius, B., Vriens, J., Prenen, J., et al. (2004) TRPV4 calcium entry channel: A paradigm for gating diversity. American Journal of Physiology Cellular Physiology, 286, C195-C205. doi:10.1152/ajpcell.00365.2003
[21] Vriens, J., Janssens, A., Prenen, J., et al. (2004) TRPV channels and modulation by hepatocyte growth factor/ scatter factor in human hepatoblastoma (HepG2) cells. Cellular Calcium, 36, 19-28. doi:10.1016/j.ceca.2003.11.006
[22] Vincent, F., Acevedo, A., Nguyen, M.T., et al. (2009) Identification and characterization of novel TRPV4 modulators. Biochemical and Biophysical Research Communications, 389, 490-494. doi:10.1016/j.bbrc.2009.09.007

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.