Share This Article:

The Impact of Seasonal Fluctuations on Rat Liver Mitochondria Response to Tested Compounds— A Comparison between Autumn and Spring. New Insight into Collecting and Interpretation of Experimental Data Originating from Different Seasons

Abstract Full-Text HTML XML Download Download as PDF (Size:323KB) PP. 20-30
DOI: 10.4236/cellbio.2013.21003    2,516 Downloads   5,041 Views   Citations

ABSTRACT

Seasonal variations play an essential role in the metabolism, behavior and activity of the laboratory animals. This study was aimed to examine whether mitochondrial function can be influenced by the seasonal changes and how large is the impact of these fluctuations on experiments with using animal models and further results interpretation. Liver mitochondria were isolated from male Wistar rats and exposed to calcium ions, PAMAM dendrimers G2.5 or their combination: (Ca2+) and dendrimer. The scientific hypothesis assumed that dendrimer G2.5 is able to limit the detrimental effect of Ca2+ ions on mitochondria function, possibly through affecting the following parameters: calcium transport, mitochondrial potential and membrane fluidity. The activity of mitochondria was monitored using fluorescent labels. The changes in calcium transport were detected using Calcium Green 5-N, the mitochondrial membrane potential and membrane fluidity were elucidated using JC-1 and DPH, respectively. The experiments were carried out during the autumn (October/November) or during the spring (May/June). The obtained data emphasize the effect of seasonal differences on liver mitochondria originating from laboratory animals and outline the importance of planning the experiments during the same seasonal period in order to receive objective and reliable results in the future. Finally, it was revealed the neutral effect of G2.5 dendrimer on mitochondria and its inability to protect mitochondria against overload of calcium ions regardless of seasonality. It was also evidenced that liver mitochondria isolated from autumn-derived animals were more sensitive to calcium and/or dendrimer exposure in comparison with mitochondria isolated from animals investigated during the spring.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Labieniec-Watala and K. Siewiera, "The Impact of Seasonal Fluctuations on Rat Liver Mitochondria Response to Tested Compounds— A Comparison between Autumn and Spring. New Insight into Collecting and Interpretation of Experimental Data Originating from Different Seasons," CellBio, Vol. 2 No. 1, 2013, pp. 20-30. doi: 10.4236/cellbio.2013.21003.

References

[1] H. Kawamata, G. Manfredi, “Mitochondrial Dysfunction and Intracellular Calcium Dysregulation in ALS,” Mechanism of Ageing and Development, Vol. 131, No. 7-8, 2010, pp. 517-526. doi:10.1016/j.mad.2010.05.003
[2] M. Labieniec and T. Gabryelak, “Preliminary Biological Evaluation of Poli(Amidoamine) (PAMAM) Dendrimer G3.5 on Selected Parameters of Rat Liver Mitochondria,” Mitochondrion, Vol. 8, No. 4, 2008, pp. 305-312. doi:10.1016/j.mito.2008.07.001
[3] S. M. Cohen, S. Petoud and K. N. Raymond, “Synthesis and Metal Binding Properties of Salicylate-, Catecholate-, and Hydroxypyridinonate-Functionalized Dendrimers,” Chemistry—A European Journal, Vol. 7, No. 1, 2001, pp. 272-279. doi:10.1002/1521-3765(20010105)7:1<272::AID-CHEM272>3.0.CO;2-Y
[4] M. S. Diallo, S. Christie, P. Swaminathan, L. Balogh, X. Shi, W. Um, C. Papelis, W. A. Goddard III and J. H. Johnson Jr., “Dendritic Chelating Agents. 1. Cu(II) Binding to Ethylene Diamine Core Poly(Amidoamine) Dendrimers in Aqueous Solutions,” Lanqmuir, Vol. 20, No. 7, 2004, pp. 2640-2651. doi:10.1021/la036108k
[5] S. Sekowski, A. Kazmierczak, J. Mazur, M. Przybyszewska and T. Gabryelak, “The Interaction between PAMAM G3.5 Dendrimer, Cd2+, Dendrimer-Cd2+ Complexes and Human Serum Albumin,” Colloids and Surfaces B: Biointerfaces, Vol. 69, No. 1, 2009, pp. 95-98. doi:10.1016/j. colsurfb.2008.11.006
[6] M. Labieniec, T. Przygodzki, J. Carsky, D. Malinska, J. Rysz and C. Watala, “Effects of Resorcylidene Aminoguanidine (RAG) on Selected Parameters of Isolated Rat Liver Mitochondria,” Chemico-Biological Interactions, Vol. 179, No. 2-3, 2009, pp. 280-287. doi:10.1016/j.cbi.2008.11.005
[7] Ch. J. Feeney, P. S. Pennefather and A. V. Gyulkhandanyan, “A Cuvette-Based Fluorometric Analysis of Mitochondrial Membrane Potential Measured in Cultured Astrocyte Monolayers,” Journal of Neuroscience Methods, Vol. 125, No. 1-2, 2003, pp. 13-25. doi:10.1016/S0165-0270(03)00027-X
[8] M. Shinitzky, “Membrane Fluidity and Cellular Functions,” In: M. Shinitzky, Ed., Physiology of Membrane Fluidity, Vol. 12, Plenum Press, New York, 1984, pp. 1-51. doi:10.1007/978-1-4684-4667-8_20
[9] P. S. Brookes, Y. Yoon, J. L. Robotham, M. W. Anders and S.-S. Sheu, “Calcium, ATP, and ROS: A Mitochondrial Love-Hate,” American Journal of Physiology: Cell Physiology, Vol. 287, No. 4, 2004, pp. C817-C833.
[10] I. J. Majoros, Ch. R. Williams, D. A. Tomalia and J. R. Baker Jr., “New Dendrimers: Synthesis and Characterization of Popam-Pamam Hybrid Dendrimers,” Macromolecules, Vol. 41, No. 22, 2008, pp. 8372-8379. doi:10.1021/ma801843a
[11] T. P. Thomas, I. Majoros, A. Kotlyar, D. Mullen, M. M. Holl and J. R. Baker Jr., “Cationic Poly(Amidoamine) Dendrimer Induces Lysosomal Apoptotic Pathway at Therapeutically Relevant Concentrations,” Biomacromolecules, Vol. 10, No. 12, 2009, pp. 3207-3214. doi:10.1021/bm900683r
[12] J. H. Lee, K. E. Cha, M. S. Kim, H. W. Hong, D. J. Chung, G. Ryu and H. Myung, “Nanosized Polyamidoamine (PAMAM) Dendrimer-Induced Apoptosis Mediated by Mitochondrial Dysfunction,” Toxicology Letters, Vol. 190, No. 2, 2009, pp. 202-207. doi:10.1016/j.toxlet.2009.07.018
[13] M. Labieniec, O. Ulicna, O. Vancova, J. Kucharska, T. Gabryelak and C. Wata?a, “Effect of Poly(Amido)Amine (PAMAM) G4 Dendrimer on Heart and Liver Mitochondria in an Animal Model of Diabetes,” Cell Biology International, Vol. 34, No. 1, 2010, pp. 89-97.
[14] S. P. Mukherjee, F. M. Lyng, A. Garcia, M. Davoren and H. J. Byrne, “Mechanistic Studies of in Vitro Cytotoxicity of Poly(Amidoamine) Dendrimers in Mammalian Cells,” Toxicology and Applied Pharmacology, Vol. 248, No. 3, 2010, pp. 259-268. doi:10.1016/j.taap.2010.08.016
[15] M. A. Kaczorowska and H. J. Cooper, “Electron Capture Dissociation and Collision-Induced Dissociation of Metal Ion (Ag+, Cu2+, Zn2+, Fe2+, and Fe3+) Complexes of Polyamidoamine (PAMAM) Dendrimers,” Journal of the American Society for Mass Spectrometry, Vol. 20, No. 4, 2009, pp. 674-681. doi:10.1016/j.jasms.2008.12.013
[16] M. Labieniec-Watala, K. Siewiera and Z. Jozwiak, “Resorcylidene Aminoguanidine (RAG) Improve Cardiac Mitochondrial Bioenergetics Impaired by Hyperglycaemia in a Model of Experimental Diabetes,” International Journal of Molecular Sciences, Vol. 12, No. 11, 2011, pp. 8013-8026. doi:10.3390/ijms12118013
[17] K. Siewiera and M. Labieniec-Watala, “Ambiguous Effect of Dendrimer PAMAM G3 on Rat Heart Respiration in a Model of an Experimental Diabetes—Objective Causes of Laboratory Misfortune or Unpredictable G3 Activity?” International Journal of Pharmaceutics, Vol. 430, No. 1-2, 2012, pp. 258-265.
[18] M. L. Carras, E. Brenowitz and E. W. Rubel, “Peripheral Auditory Processing Changes Seasonally in Gambel’s White-Crowned Sparrow,” Journal of Comparative Physiology A: Neuroethology Sensory, Neural and Behavioral Physiology, Vol. 196, No. 8, 2010, pp. 581-599. doi:10.1007/s00359-010-0545-1
[19] L. B. Martin, Z. M. Weil and R. J. Nelson, “Seasonal Changes in Vertebrate Immune Activity: Mediation by Physiological Trade-Offs,” Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 363, No. 1490, 2008, pp. 321-339. doi:10.1098/rstb.2007.2142
[20] M. T. Avey, A. Rodriguez and Ch. B. Sturdy, “Seasonal Variation of Vocal Behaviour in a Temperate Songbird: Assessing the Effects of Laboratory Housing on Wild-Caught, Seasonally Breeding Birds,” Behavioural Processes, Vol. 88, No. 3, 2011, pp. 177-183. doi:10.1016/j.beproc.2011.09.005
[21] B. J. Prendergast, A. Kampf-Lassin, J. R. Yess, J. Galang, N. McMaster and L. M. Kay, “Winter Lengths Enhance T Lymphocyte Phenotypes, Inhibit Cytokine Responses, and Attenuate Behavioral Symptoms of Infection in Laboratory Rats,” Brain Behavior, and Immunity, Vol. 21, No. 8, 2007, pp. 1096-1108. doi:10.1016/j.bbi.2007.05.004
[22] A. Konior, E. Klemenska, M. Brudek, E. Podolecka, E. Czarnowska and A. Ber?sewicz, “Seasonal Superoxide Overproduction and Endothelial Activation in Guinea-Pig Heart; Seasonal Oxidative Stress in Rats and Humans,” Journal of Molecular and Cellular Cardiology, Vol. 50, No. 4, 2011, pp. 686-694. doi:10.1016/j.yjmcc.2010.11.010
[23] S. Masumura, F. Furui, M. Hashimoto and Y. Watanabe, “The Effects of Season and Exercise on the Levels of Plasma Polyunsaturated Fatty Acids and Lipoprotein Cholesterol in Young Rats,” Biochimica and Biophysica Acta: Lipids and Lipid Metabolism, Vol. 1125, No. 3, 1992, pp. 292-296.
[24] E. J. Mock and A. I. Frankel, “A Seasonal Influence on Tests Weight and Serum Gonadotropin Levels of the Mature Male Laboratory Rat,” Biology Reproduction, Vol. 18, No. 5, 1978, pp. 772-778. doi:10.1095/biolreprod18.5.772
[25] M. J. Devinney, L. M. Malaiyandi, O. Vergun, D. B. DeFranco, T. G. Hastings and K. E. Dineley, “A Comparison of Zn2+- and Ca2+-Triggered Depolarization of Liver Mitochondria Reveals No Evidence of Zn2+-Induced Permeability Transition,” Cell Calcium, Vol. 45, No. 5, 2001, pp. 447-455. doi:10.1016/j.ceca.2009.03.002
[26] O. Vergun and I. Reynolds, “Distinct Characteristics of Ca2+-Induced Depolarization of Isolated Brain and Liver Mitochondria,” Biochimica and Biophysica Acta: Bioenergetics, Vol. 1709. No. 2, 2005, pp. 127-137.
[27] P. M. Silva, E. Tanabe, A. P. Hermoso, C. A. Bersani-Amado, A. Bracht, E. L. Ishii-Iwamoto and C. L. Salgueiro-Pagadigorria, “Changes in Calcium-Dependent Membrane Permeability Properties in Mitochondria of Livers from Arthritic Rats,” Cell Biochemistry and Function, Vol. 26, No. 4, 2008, pp. 443-450. doi:10.1002/cbf.1461
[28] M. Picard, D. Ritchie and K. J. Wright, “Mitochondrial Functional Impairment with Aging Is Exaggerated in Isolated Mitochondria Compared to Permeabilized Myofibers,” Aging Cell, Vol. 9, No. 6, 2010, pp. 1032-1046. doi:10.1111/j.1474-9726.2010.00628.x
[29] M. Picard, D. Ritchie, M. M. Thomas, K. J. Wright and R. T. Hepple, “Alterations in Intrinsic Mitochondrial Function with Aging Are Fiber Type-Specific and Do Not Explain Differential Atrophy between Muscles,” Aging Cell, Vol. 10, No. 6, 2011, pp. 1047-1055. doi:10.1111/j.1474-9726.2011.00745.x

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.