Share This Article:

Steady-State Behavior of Semiconductor Laser Diodes Subject to Arbitrary Levels of External Optical Feedback

Abstract Full-Text HTML XML Download Download as PDF (Size:491KB) PP. 128-134
DOI: 10.4236/opj.2013.31021    5,398 Downloads   8,064 Views   Citations
Author(s)    Leave a comment

ABSTRACT

This paper investigates the steady-state behavior of a semiconductor laser subject to arbitrary levels of external optical feedback by means of an iterative travelling-wave (ITW) model. Analytical expressions are developed based on an iterative equation. We show that, as in good agreement with previous work, in the weak-feedback regime of operation except for a phase shift the ITW model will be simplified to the Lang-Kobayashi (LK) model, and that in the case where this phase shift is equal to zero the ITW model is identical to the LK model. The present work is of use in particular for distinguishing the coherence-collapse regime from the strong-feedback regime where low-intensity-noise and narrow-linewidth laser operation would be possible at high feedback levels with re-stabilization of the compound laser system.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Q. Zou, "Steady-State Behavior of Semiconductor Laser Diodes Subject to Arbitrary Levels of External Optical Feedback," Optics and Photonics Journal, Vol. 3 No. 1, 2013, pp. 128-134. doi: 10.4236/opj.2013.31021.

References

[1] B. Tromborg, J. H. Osmundsen and H. Olesen, “Stability Analysis for a Semiconductor Laser in an External Cavity,” IEEE Journal of Quantum Electronics, Vol. 20, No. 9, 1984, pp. 1023-1032. doi:10.1109/JQE.1984.1072508
[2] N. Schunk and K. Petermann, “Numerical Analysis of the Feedback Regimes for a Single-Mode Semiconductor Laser with External Feedback,” IEEE Journal of Quantum Electronics, Vol. 24, No. 7, 1988, pp. 1242-1247. doi:10.1109/3.960
[3] J. O. Binder and G. D. Cormack, “Mode Selection and Stability of a Semiconductor Laser with Weak Optical Feedback,” IEEE Journal of Quantum Electronics, Vol. 25, No. 11, 1989, pp. 2255-2259. doi:10.1109/3.42053
[4] R. Lang and K. Kobayashi, “External Optical Feedback Effects on Semiconductor Injection Laser Properties,” IEEE Journal of Quantum Electronics, Vol. 16, No. 3, 1980, pp. 347-355. doi:10.1109/JQE.1980.1070479
[5] J. Ye, H. Li, and J. G. McInerney, “Period-Doubling Route to Chaos in a Semiconductor Laser with Weak Optical Feedback,” Physical Review A, Vol. 47, No. 3, 1993, pp. 2249-2252. doi:10.1103/PhysRevA.47.2249
[6] T. Sano, “Antimode Dynamics and Chaotic Itinerancy in the Coherence Collapse of Semiconductor Lasers with Optical Feedback,” Physical Review A, Vol. 50, No. 3, 1994, pp. 2719-2726. doi:10.1103/PhysRevA.50.2719
[7] J. Zamora-Munt, C. Masoller and J. García-Ojalvo, “Transient Low-Frequency Fluctuations in Semiconductor Lasers with Optical Feedback,” Physical Review A, Vol. 81, No. 3, 2010, Article ID: 033820. doi:10.1103/PhysRevA.81.033820
[8] T. Erneux and P. Glorieux, “Laser Dynamics,” Cambridge University Press, New York, 2010.
[9] Q. Zou and S. Azouigui, “Analysis of Coherence-Col lapse Regime of Semiconductor Lasers under External Optical Feedback by Perturbation Method,” Chapter 5, Semiconductor Laser Diode Technology and Applications, Edition InTech, 2012, pp. 71-86.
[10] J. M?rk, “Rep. S48,” Danish Center for Applied Mathematics and Mechanics, 1989.
[11] F. Sporleder, “Travelling Wave Line Model for Laser Diodes with External Optical Feedback,” Proceedings of the URSI International Symposium on Electromagnetic Theory, International Union of Radio Science, Brussels, 1983, pp. 585-588.
[12] L. N. Langley, K. A. Shore and J. M?rk, “Dynamical and Noise Properties of Laser Diodes Subject to Strong Optical Feedback,” Optics Letters, Vol. 19, No. 24, 1994, pp. 2137-2139. doi:10.1364/OL.19.002137
[13] J. E. Carroll, J. Whiteaway and R. Plumb, “Distributed Feedback Semiconductor Lasers,” Institution of Electrical Engineers, London and SPIE Optical Engineering Press, 1998.
[14] U. Bandelow, M. Radziunas, J. Sieber and M. Wolfrum, “Impact of Gain Dispersion on the Spatio-Temporal Dynamics of Multisection Lasers,” IEEE Journal of Quantum Electronics, Vol. 37, No. 2, 2001, pp. 183-188. doi:10.1109/3.903067
[15] M. Radziunas, H. J. Wünsche, B. Krauskopf and M. Wolfrum, “External Cavity Modes in Lang-Kobayashi and Traveling Wave Models,” Proceedings of SPIE, Vol. 6184, 2006. doi:10.1117/12.663546
[16] P. S. Spencer, C. R. Mirasso and K. A. Shore, “Effect of Strong Optical Feedback on Vertical-Cavity Surface Emitting Lasers,” IEEE Photonics Technology Letters, Vol. 10, No. 2, 1998, pp. 191-193. doi:10.1109/68.655354
[17] C. E. Weiman and L. Holberg, “Using Diode Lasers for Atomic Physics,” Review of Scientific Instruments, Vol. 62, No. 1, 1991.
[18] S. Azouigui, B. Kelleher, S. P. Hegarty, G. Huyet, B. Dagens, F. Lelarge, A. Accard, D. Make, O. Le Gouezigou, K. Merghem, A. Martinez, Q. Zou and A. Ramdane, “Coherence Collapse and Low-Frequency Fluctuations in Quantum-Dash Based Lasers Emitting at 1.57 μm,” Optics Express, Vol. 15, No. 21, 2007, pp. 14155-14162. doi:10.1364/OE.15.014155
[19] C. H. Henry and R. F. Kazarinov, “Instability of Semiconductor Lasers Due to Optical Feedback from Distant Reflectors,” IEEE Journal of Quantum Electronics, Vol. 22, No. 2, 1986, pp. 294-301. doi:10.1109/JQE.1986.1072959

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.