Share This Article:

Emerging Frontiers in Therapeutics of Diffuse Large B Cell Lymphoma: Epigenetics and B Cell Receptor Signaling

Abstract Full-Text HTML Download Download as PDF (Size:483KB) PP. 485-491
DOI: 10.4236/jct.2013.43A059    4,045 Downloads   6,121 Views   Citations


This review discusses the impact of gene expression profiling and sequencing discoveries on new therapeutic strategies in Non-Hodgkin Lymphomas, particularly Diffuse Large B cell Lymphoma. Alterations in oncogenes, over-active signaling pathways down-stream of the B cell receptor, and epigenetic gene mutations will be described. We will also review new targeting strategies aimed at each of these aspects of cell biology encompassing BCL2, BTK, PKCβ, PI3K/mTOR and HDAC inhibition. Specific new drugs in clinical trials and early trial results are included as well.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Puvvada and L. Rimsza, "Emerging Frontiers in Therapeutics of Diffuse Large B Cell Lymphoma: Epigenetics and B Cell Receptor Signaling," Journal of Cancer Therapy, Vol. 4 No. 3A, 2013, pp. 485-491. doi: 10.4236/jct.2013.43A059.


[1] R. Siegel, D. Naishadham and A. Jemal, “Cancer Statistics,” A Cancer Journal for Clinicians, Vol. 62, No. 1, 2012, pp. 10-29. doi:10.3322/caac.20138
[2] A. A. Alizadeh, et al., “Distinct Types of Diffuse Large B-Cell Lymphoma Identified by Gene Expression Profiling,” Nature, Vol. 403, No. 6769, 2000, pp. 503-511. doi:10.1038/35000501
[3] A. Rosenwald, et al., “Molecular Diagnosis of Primary Mediastinal B Cell Lymphoma Identifies a Clinically Favorable Subgroup of Diffuse Large B Cell Lymphoma Related to Hodgkin Lymphoma,” The Journal of Experimental Medicine, Vol. 198, No. 6, 2003, pp. 851-862. doi:10.1084/jem.20031074
[4] R. E. Davis, et al., “Constitutive Nuclear Factor kappaB Activity Is Required for Survival of Activated B Cell-Like Diffuse Large B Cell Lymphoma Cells,” The Journal of Experimental Medicine, Vol. 194, No. 12, 2001, pp. 1861-1874. doi:10.1084/jem.194.12.1861
[5] G. Wright, et al., “A Gene Expression-Based Method to Diagnose Clinically Distinct Subgroups of Diffuse Large B Cell Lymphoma,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 17, 2003, pp. 9991-9996. doi:10.1073/pnas.1732008100
[6] A. Rosenwald, et al., “The Use of Molecular Profiling to Predict Survival after Chemotherapy for Diffuse Large-B-Cell Lymphoma,” New England Journal of Medicine, Vol. 346, No. 25, 2002, pp. 1937-1947. doi:10.1056/NEJMoa012914
[7] G. Lenz, et al., “Stromal gene signatures in large-B-cell lymphomas,” New England Journal of Medicine, Vol. 359, No. 22, 2008, pp. 2313-2323. doi:10.1056/NEJMoa0802885
[8] K. J. Savage, et al., “MYC Gene Rearrangements Are Associated with a Poor Prognosis in Diffuse Large B-Cell Lymphoma Patients Treated with R-CHOP Chemotherapy,” Blood, Vol. 114, No. 17, 2009, pp. 3533-3537. doi:10.1182/blood-2009-05-220095
[9] J. Iqbal, et al., “BCL2 Translocation Defines a Unique Tumor Subset within the Germinal Center B-Cell-Like Diffuse Large B-Cell Lymphoma,” American Journal of Pathology, Vol. 165, No. 1, 2004, pp. 159-166. doi:10.1016/S0002-9440(10)63284-1
[10] J. E. Delmore, et al., “BET Bromodomain Inhibition as a Therapeutic Strategy to Target c-Myc,” Cell, Vol. 146, No. 6, 2011, pp. 904-917. doi:10.1016/j.cell.2011.08.017
[11] C. J. O. Nadja Kopp, L. Bird, R. Paranal, J. Qi, T. Bowman, S. J. Rodig, A. L. Kung, J. E. Bradner and D. Weinstock, “BET Bromodomain Inhibition Targets Both c-Myc and IL7R in Acute Lymphoblastic Leukemia,” Blood, Vol. 120, No. 21, 2012, Abstract No: 672.
[12] S. Kendrick and L. H. Hurley, “The Role of G-Quadruplex/i-Motif Secondary Structures as Cis-Acting Regulatory Elements,” Pure and Applied Chemistry, Vol. 82, No. 8, 2010, pp. 1609-1621. doi:10.1351/PAC-CON-09-09-29
[13] NCT00955786, “Dose-Escalation Study of CX-3543 in Patients with Advanced Solid Tumors or Lymphomas,” National Institutes of Health, 2012.
[14] M. S. Davids and J. A. Burger, “Cell Trafficking in Chronic Lymphocytic Leukemia,” Open Journal of Hematolog, Vol. 3, No. S1, 2012.
[15] M. Konopleva, et al., “Mechanisms of Antileukemic Activity of the Novel Bcl-2 Homology Domain-3 Mimetic GX15-070 (Obatoclax),” Cancer Research, Vol. 68, No. 9, 2008, pp. 3413-3420. doi:10.1158/0008-5472.CAN-07-1919
[16] J. R. Brown, “Obatoclax in Combination with Fludarabine and Rituximab (FR) Is Well Tolerated and Shows Promising Clinical Activity in Relapsed CLL/SLL,” Blood, Vol. 118, No. 21, 2012, Abstract No: 2865.
[17] P. K. Paik, et al., “A Phase I Study of Obatoclax Mesylate, a Bcl-2 Antagonist, Plus Topotecan in Solid Tumor Malignancies,” Cancer Chemotherapy and Pharmacology, Vol. 66, No. 6, 2010, pp. 1079-1085. doi:10.1007/s00280-010-1265-5
[18] K. D. Mason, et al., “Programmed Anuclear Cell Death Delimits Platelet Life Span,” Cell, Vol. 128, No. 6, 2007, pp. 1173-1186. doi:10.1016/j.cell.2007.01.037
[19] W. H. Wilson, et al., “Navitoclax, a Targeted High-Affinity Inhibitor of BCL-2, in Lymphoid Malignancies: A Phase 1 Dose-Escalation Study of Safety, Pharmacokinetics, Pharmacodynamics, and Antitumour Activity,” The Lancet Oncology, Vol. 11, No. 12, 2010, pp. 1149-1159. doi:10.1016/S1470-2045(10)70261-8
[20] S. H. Leu, “Sabutoclax, a Novel Pan BCL2 Family Inhibitor, Sensitizes Dormant Blast Crisis Chronic Myeloid Leukemia Stem Cells to Dasatinib,” Blood, 2012.
[21] J. S. Waters, et al., “Phase I Clinical and Pharmacokinetic Study of bcl-2 Antisense Oligonucleotide Therapy in Patients with Non-Hodgkin’s Lymphoma,” Journal of Clinical Oncology, Vol. 18, No. 9, 2000, pp. 1812-1823.
[22] M. S. Davids, and A. Letai, “Targeting the B-Cell Lymphoma/Leukemia 2 Family in Cancer,” Journal of Clinical Oncology, Vol. 30, No. 5, 2012, pp. 3127-3135. doi:10.1200/JCO.2011.37.0981
[23] NCT01328626, “A Phase 1 Study Evaluating the Safety and Pharmacokinetics of ABT-199 in Subjects with Relapsed or Refractory Chronic Lymphocytic Leukemia and Non-Hodgkin Lymphoma,” 2012.
[24] R. E. Davis, et al., “Chronic Active B-Cell-Receptor Signalling in Diffuse Large B-Cell Lymphoma,” Nature, Vol. 463, No. 7277, 2010, pp. 88-92. doi:10.1038/nature08638
[25] M. E. Conley, et al., “Mutations in btk in Patients with Presumed X-Linked Agammaglobulinemia,” American Journal of Human Genetics, Vol. 62, No. 5, 1998, pp. 1034-1043. doi:10.1086/301828
[26] J. Valiaho, C. I. Smith and M. Vihinen, “BTKbase: The Mutation Database for X-Linked Agammaglobulinemia,” Human Mutation, Vol. 27, No. 12, 2006, pp. 1209-1217. doi:10.1002/humu.20410
[27] L. M. Staudt, “Oncogenic Activation of NF-kappaB,” Cold Spring Harbor Perspectives in Biology, Vol. 2, No. 6, 2010, Article ID: a000109. doi:10.1101/cshperspect.a000109
[28] M. Kraus, et al., “Survival of Resting Mature B Lymphocytes Depends on BCR Signaling via the Igalpha/Beta Heterodimer,” Cell, Vol. 117, No. 6, 2004, pp. 787-800. doi:10.1016/j.cell.2004.05.014
[29] W. H. Wilson, “The Bruton’s Tyrosine Kinase (BTK) Inhibitor, Ibrutinib (PCI-32765) Has Preferential Activity in the ABC Subtype of Relapsed/Refractory de Novo Diffuse Large B Cell Lymphoma (DLBCL): Interim Results of a MultiCenter, Open-Label, Phase II Study, in American Society of Hematology,” Blood, 2012.
[30] M. J. Robertson, et al., “Phase II study of Enzastaurin, a Protein Kinase C Beta Inhibitor, in Patients with Relapsed or Refractory Diffuse Large B-Cell Lymphoma,” Journal of Clinical Oncology, Vol. 25, No. 13, 2007, pp. 1741-1746. doi:10.1200/JCO.2006.09.3146
[31] J. D. E. A. Hainsworth, “Randomized Phase II Study of R-CHOP Plus Enzastaurin versus R-CHOP in the First Line Treatment of Patients iwth Intermediate and High Risk Diffuse Large B Cell Lymphoma: Preliminary Analysis,” Journal of Clinical Oncology, Vol. 29, No. 8016, 2011.
[32] NCT00332202, “Prelude: Study to Investigate the Prevention of Relapse in Lymphoma Using Daily Enzastaurin,” National Institutes of Health: Clinical Trials, 2012.
[33] R. M. Young, et al., “Mouse Models of Non-Hodgkin Lymphoma Reveal Syk as an Important Therapeutic Target,” Blood, Vol. 113, No. 11, 2009, pp. 2508-2516. doi:10.1182/blood-2008-05-158618
[34] J. W. Friedberg, et al., “Inhibition of Syk with Fostamatinib Disodium Has Significant Clinical Activity in Non-Hodgkin Lymphoma and Chronic Lymphocytic Leukemia,” Blood, Vol. 115, No. 13, 2010, pp. 2578-2585. doi:10.1182/blood-2009-08-236471
[35] A. Bernal, et al., “Survival of Leukemic B Cells Promoted by Engagement of the Antigen Receptor,” Blood, Vol. 98, No. 10, 2001, pp. 3050-3057. doi:10.1182/blood.V98.10.3050
[36] R. J. Dowling, et al., “Dissecting the Role of mTOR: Lessons from mTOR Inhibitors,” Biochimica et Biophysica Acta, Vol. 1804, No. 3, 2010, pp. 433-439. doi:10.1016/j.bbapap.2009.12.001
[37] K. Wanner, et al., “Mammalian Target of Rapamycin Inhibition Induces Cell Cycle Arrest in Diffuse Large B Cell Lymphoma (DLBCL) Cells and Sensitises DLBCL Cells to Rituximab,” British Journal of Haematology, Vol. 134, No. 5, 2006, pp. 475-484. doi:10.1111/j.1365-2141.2006.06210.x
[38] T. E. Witzig, et al., “A Phase II Trial of the Oral mTOR Inhibitor Everolimus in Relapsed Aggressive Lymphoma,” Leukemia, Vol. 25, No. 2, 2011, pp. 341-347. doi:10.1038/leu.2010.226
[39] S. T. Jou, et al., “Essential, Nonredundant Role for the Phosphoinositide 3-Kinase p110delta in Signaling by the B-Cell Receptor Complex,” Molecular and Cellular Biology, Vol. 22, No. 24, 2002, pp. 8580-8591. doi:10.1128/MCB.22.24.8580-8591.2002
[40] B. J. Lannutti, et al., “CAL-101, a p110delta Selective Phosphatidylinositol-3-Kinase Inhibitor for the Treatment of B-Cell Malignancies, Inhibits PI3K Signaling and Cellular Viability,” Blood, Vol. 117, No. 2, 2011, pp. 591-594. doi:10.1182/blood-2010-03-275305
[41] L. Wang, T. Kurosaki and S. J. Corey, “Engagement of the B-Cell Antigen Receptor Activates Stat through Lyn in a Jak-Independent Pathway,” Oncogene, Vol. 26, No. 20, 2007, pp. 2851-2859. doi:10.1038/sj.onc.1210092
[42] NCT01431209, “Ruxolitinib Phosphate (Oral JAK Inhibitor INCB18424) in Treating Patients with Relapsed or Refractory Diffuse Large B-Cell or Peripheral T-Cell Non-Hodgkin Lymphoma,” National Institutes of Healt, 2012.
[43] R. D. Morin, et al., “Frequent Mutation of Histone-Modifying Genes in Non-Hodgkin Lymphoma,” Nature, Vol. 476, No. 7360, 2011, pp. 298-303. doi:10.1038/nature10351
[44] H. D. Youn and J. O. Liu, “Cabin1 represses MEF2-Dependent Nur77 Expression and T Cell Apoptosis by Controlling Association of Histone Deacetylases and Acetylases with MEF2,” Immunity, Vol. 13, No. 1, 2000, pp. 85-94. doi:10.1016/S1074-7613(00)00010-8
[45] L. Pasqualucci, et al., “Inactivating Mutations of Acetyltransferase Genes in B-Cell Lymphoma,” Nature, Vol. 471, No. 7337, 2011, pp. 189-195. doi:10.1038/nature09730
[46] L. Pasqualucci, et al., “Analysis of the Coding Genome of Diffuse Large B-Cell Lymphoma,” Nature Genetics, Vol. 43, No. 9, 2011, pp. 830-837. doi:10.1038/ng.892
[47] NCT00967044, “Panobinostat (LBH589) Plus Everolimus (RAD001) in Patients with Relapsed and Refractory Lymphoma,” National Institutes of Health, 2012.
[48] NCT01238692, “A Phase II Study of Oral Panobinostat (LBH589) and Rituximab to Treat Diffuse Large B Cell Lymphoma,” National Institutes of Health, 2012.
[49] M. Crump, et al., “Phase II Trial of Oral Vorinostat (Suberoylanilide Hydroxamic Acid) in Relapsed Diffuse Large-B-Cell Lymphoma,” Annals of Oncology, Vol. 19, No. 5, 2008, pp. 964-969. doi:10.1093/annonc/mdn031
[50] S. Bhalla, et al., “PCI-24781 Induces Caspase and Reactive Oxygen Species-Dependent Apoptosis through NFkappaB Mechanisms and Is Synergistic with Bortezomib in Lymphoma Cells,” Clinical Cancer Research, Vol. 15, No. 10, 2009, pp. 3354-3365. doi:10.1158/1078-0432.CCR-08-2365
[51] A. M. Evens, “A Phase II Multicenter Study of the Histone Deacetylase Inhibitor (HDACi) Abexinostat (PCI-24781) in Relapsed/Refractory Follicular Lymphoma (FL) and Mantle Cell Lymphoma (MCL), in ASH Annual Meeting Abstracts,” Blood, 2012.
[52] D. O. Persky, “A Phase II Study of PXD101 (belinostat) in Relapsed and Refractory Aggressive B-Cell Lymphomas (rel/ref ABCL); SWOG 0520 in ASCO,” Journal of Clinical Oncology, Vol. 30, 2012, Article ID: e18536.
[53] R. Noopur, “Rocilinostat (ACY-1215), a Selective HDAC 6 Inhibitor, Alone and in Combination with Bortezomib in Multiple Myeloma: Preliminary Results from the First-in-Humans Phase I/II Study, in ASH Annual Meeting Abstracts,” Blood, 2012.
[54] L. Santo, et al., “Preclinical Activity, Pharmacodynamic, and Pharmacokinetic Properties of a Selective HDAC6 Inhibitor, ACY-1215, in Combination with Bortezomib in Multiple Myeloma,” Blood, Vol. 119, No. 11, 2012, pp. 2579-2589. doi:10.1182/blood-2011-10-387365
[55] L. C. Cerchietti, et al., “BCL6 Repression of EP300 in Human Diffuse Large B Cell Lymphoma Cells Provides a Basis for Rational Combinatorial Therapy,” Journal of Clinical Investigation, Vol. 120, No. 12, 2010, pp. 4569-4582. doi:10.1172/JCI42869
[56] L. C. Cerchietti, et al., “A Peptomimetic Inhibitor of BCL6 with Potent Antilymphoma Effects in Vitro and in Vivo,” Blood, Vol. 113, No. 15, 2009, pp. 3397-3405. doi:10.1182/blood-2008-07-168773
[57] T. E. A. Dupont, “Combinatorial Targeting of BCL6 and Anti-Apoptotic Proteins in Diffuse Large B-Cell Lymphoma (DLBCL) and Follicular Lymphoma (FL),” Blood, 2012.
[58] M. T. McCabe, et al., “EZH2 Inhibition as a Therapeutic Strategy for Lymphoma with EZH2-Activating Mutations,” Nature, Vol. 492, No. 7427, 2012, pp. 108-112. doi:10.1038/nature11606
[59] M. Gerlinger, et al., “Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing,” New England Journal of Medicine, Vol. 366, No. 10, 2012, pp. 883-892. doi:10.1056/NEJMoa1113205

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.