Share This Article:

Film-Forming Properties of Fullerene Derivatives in Electrospray Deposition Method

Full-Text HTML Download Download as PDF (Size:1311KB) PP. 84-88
DOI: 10.4236/jsemat.2013.31A012    3,163 Downloads   5,338 Views   Citations


Thin films of three types of fullerene derivatives were prepared through the electrospray deposition (ESD) method. The optimized conditions for the fabrication of the thin films were investigated for different types of fullerene derivatives: [6,6]-phenyl-C61-butyric acid methyl ester, [6,6]-phenyl-C71-butyric acid methyl ester, and indene-C60-monoadduct. The spray diameter during the ESD process was observed as a function of the supply rate achieved by changing the applied voltage. In all cases, the spray diameter increased with increasing applied voltage, reaching the maximum diameter (Dmax) in the voltage range 4 to 6 kV. It was clear that Dmax was influenced by the dipole moments of the fullerene derivatives (as calculated by density functional theory methods). Scanning electron microscopy observation of the fabricated thin films showed that imbricated structures were formed through the stacking of the fullerene-derivative sheets. Atomic force microscopy images revealed that the density of the imbricated structure was dependent on the spray diameter during the ESD process, and the root-mean-square roughness of the film surface decreased with increasing applied voltage. These findings suggest that the ESD method will be effective for the preparation of fullerene-derivative thin films for the production of organic devices.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Takeshi, K. Takagi, T. Fukuda, T. Chihara and Y. Tajima, "Film-Forming Properties of Fullerene Derivatives in Electrospray Deposition Method," Journal of Surface Engineered Materials and Advanced Technology, Vol. 3 No. 1A, 2013, pp. 84-88. doi: 10.4236/jsemat.2013.31A012.


[1] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, “Light-Emitting Diodes Based on Conjugated Polymers,” Nature, Vol. 347, 1990, pp. 539-541. doi:10.1038/347539a0
[2] H. Kawaguchi, S. Iba, Y. Kato, T. Sekitani, T. Someya and T. Sakurai, “A 3-D-Stack orgaNic Sheet-Type Scanner with Double-Wordline and Double-Bitline Structure,” Sensors Journal, IEEE, Vol. 6, No. 5, 2006, pp. 1209-1217. doi:10.1109/JSEN.2006.881375
[3] M. Hiramoto, H. Fujiwara and M. Yokoyama, “p-i-n Like Behavior in Three-Layered Organic Solar Cells Having a Codeposited Interlayer Of Pigments,” Journal of Applied Physics, Vol. 72, No. 8, 1992, pp. 3781-3787. doi:10.1063/1.352274
[4] N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky and F. Wudl, “Semiconducting Polymer Buckminsterfullerene Heterojunctions: Diodes, Photodiodes, and Photovoltaic Cells,” Applied Physics Letters, Vol. 62, No. 6, 1993, pp. 585-587. doi:10.1063/1.108863
[5] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti and A. B. Holmes, “Exciton Diffusion and Dissociation in a Poly(p-phenylenevinylene)/C60 Heterojunction Photovoltaic Cell,” Applied Physics Letters, Vol. 68, No. 22, 1996, pp. 3120-3122. doi:10.1063/1.115797
[6] L. S. Roman, M. R. Andersson, T. Yohannes and O. Inganás, “High Quantum Efficiency Polythiophene/C60 Photodiodes,” Advanced Materials, Vol. 10, No. 10, 1998, pp. 774-777. doi:10.1002/(SICI)1521-4095(199807)10:10<774::AID-ADMA774>3.0.CO;2-J
[7] L. C. Chen, D. Godovsky, O. Inganás, J. C. Hummelen, R. A. J. Janssens, M. Svensson and M. R. Andersson, “Polymer Photovoltaic Devices from Stratified Multilayers of Donor-Acceptor Blends,” Advanced Materials, Vol. 12, No. 18, 2000, pp. 1367-1370. doi:10.1002/1521-4095(200009)
[8] T. Fukuda, K. Takagi, T. Asano, Z. Honda, N. Kamata, H. Shirai, J. Ju, Y. Yamagata and Y. Tajima, “Improved Power Conversion Efficiency of Organic Photovoltaic Cell Fabricated by Electrospray Deposition Method by Mixing Different Solvents,” Japanese Journal of Applied Physics, Vol. 51, 2012, Article ID: 02BK12. doi:10.1143/JJAP.51.02BK12
[9] V. N. Morozov and T. Y. Morozova, “Electrospray Deposition as a Method to Fabricate Functionally Active Protein Films,” Analytical Chemistry, Vol. 71, No. 7, 1999, pp. 1415-1420. doi:10.1021/ac9808775
[10] J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao and C. L. Wilkins, “Preparation and Characterization of Fulleroid and Methanofullerene Derivatives,” The Journal of Organic Chemistry, Vol. 60, No. 3, 1995, pp. 532-538. doi:10.1021/jo00108a012
[11] M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. Hal and R. A. J. Janssen, “Efficient Methano[70]fullerene/MDMO-PPV Bulk Heterojunction Photovoltaic Cells,” Angewandte Chemie International Edition, Vol. 42, No. 29, 2003, pp. 3371-3375. doi:10.1002/anie.200351647
[12] A. Puplovskis, J. Kacens and O. Neilands, “New Route for [60]Fullerene Functionalisation in [4+2] Cycloaddition Reaction Using Indene,” Tetrahedron Letters, Vol. 38, No. 13, 1997, pp. 285-288. doi:10.1016/S0040-4039(96)02293-9
[13] T. Fukuda, K. Takagi, T. Asano, Z. Honda, N. Kamata, K. Ueno, H. Shirai, J. Ju, Y. Yamagata and Y. Tajima, “Bulk Heterojunction Organic Photovoltaic Cell Fabricated by the Electrospray Deposition Method Using Mixed Organic Solvent,” Physica Status Solidi (RRL)—Rapid Research Letters, Vol. 5, No. 7, 2011, pp. 229-231. doi:10.1002/pssr.201105232
[14] T. Fukuda, H. Asaki, T. Asano, K. Takagi, Z. Honda, N. Kamata, J. Ju and Y. Yamagata, “Surface Morphology of Fluorene Thin Film Fabricated by Electrospray Deposition Technique Using Two Organic Solvents: Application for Organic Light-Emitting Diodes,” Thin Solid Films, Vol. 520, No. 1, 2011, pp. 600-605. doi:10.1016/j.tsf.2011.07.048
[15] J. Ju, Y. Yamagata and T. Higuchi, “Thin-Film Fabrication Method for Organic Light-Emitting Diodes Using Electrospray Deposition,” Advanced Materials, Vol. 21, No. 43, 2009, pp. 4343-4347. doi:10.1002/adma.200900444
[16] H. Oh, K. Kim and S. Kim, “Characterization of Deposition Patterns Produced by Twin-Nozzle Electrospray,” Journal of Aerosol Science, Vol. 39, No. 9, 2008, pp. 801-813. doi:10.1016/j.jaerosci.2008.05.003
[17] A. M. Ga?án-Calvo, J. Dávila and A. Barrero, “Current and Droplet Size in the Electrospraying of Liquids. Scaling Laws,” Journal of Aerosol Science, Vol. 28, No. 2, 1997, pp. 249-275. doi:10.1016/S0021-8502(96)00433-8

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.