Share This Article:

Method for Tentative Evaluation of Membrane Permeability Coefficients for Sodium and Potassium Ions in Unicellular Organisms

Abstract Full-Text HTML XML Download Download as PDF (Size:502KB) PP. 91-98
DOI: 10.4236/ojbiphy.2013.31A012    2,865 Downloads   5,798 Views   Citations

ABSTRACT

The membrane permeability coefficient for sodium and potassium ions in unicellular organisms can be calculated using the data for cell volume, surface and mean generation time during growth and dividing of cells by binary. Accordingly theory of proposed method, the membrane permeability coefficients for passed trough outer cell membrane sodium and potassium ions, is equal to the volume of unicellular organism divided to product between cell surface and mean generation time of cells. The calculated by this way diapason of values overlaps with experimentally measured diapason of values of permeability coefficient for sodium and potassium ions. The deviation between the theoretically calculated and experimentally measured values of permeability coefficient does not exceed one order of magnitude.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Atanasov, "Method for Tentative Evaluation of Membrane Permeability Coefficients for Sodium and Potassium Ions in Unicellular Organisms," Open Journal of Biophysics, Vol. 3 No. 1A, 2013, pp. 91-98. doi: 10.4236/ojbiphy.2013.31A012.

References

[1] A. L. Hodgkin, “The Ionic Basis of Electrical Activity in Nerve and Muscle,” Biological Reviews, Vol. 26, No. 4, 1951, pp. 339-409. doi:10.1111/j.1469-185X.1951.tb01204.x
[2] R. Sato and Y. Kagawa, “Transport and Bioenergetics in Biomembranes,” Japan Scientific Society Press, Tokyo, 1982.
[3] S.-V. Albers, J. L. C. M. Van de Vossenberg, A. J. M. Driessen and W. N. Konings, “Bioenergetics and Solute Uptake under Extreme Conditions,” Extremophiles, Vol. 5, No. 5, 2001, pp. 285-294.
[4] W. N. Konings, S.-V. Albers, S. Koning and A. J. M. Driessen, “The Cell Membrane Plays a Cruicial Role in Survival of Bacteria and Archaea in Extreme Environments,” Antonie van Leeuwenhoek, Vol. 81, 2002, pp. 61-72. doi:10.1023/A:1020573408652
[5] B. J. Zwolinski, H. Eyring and C. E. Reese, “Diffusion and Membrane Permeability,” Journal of Physical Chemistry, Vol. 53, No. 9, 1949, pp. 1426-1453. doi:10.1021/j150474a012
[6] W. B. Kinter and J. B. Pritchard, “Altered Permeability of Cell Membranes,” Comprehensive Physiology, 2011, pp. 563-576.
[7] G. Rechkemmer, “Transport of Weak Electrolytes,” Comprehensive Physiology, pp. 371-388. doi:10.1002/cphy.cp060415
[8] W. Stein, “The Movement of Molecules across Membranes,” Academic Press, New York, 1967.
[9] A. A. Eddy and J. A. Barnett, “A History of Research on Yeasts II. The Study of Solute Transport: The First 90 Years, Simple and Facilitated Diffusion,” Yeast, Vol. 24, No. 12, 2007, pp. 1023-1059. doi:10.1002/yea.1572
[10] K. Yamauchi, K. Doi, Y. Yoshida and M. Kinoshita, “Archaebacterial Lipids: Highly Proton-Impermeable Membrane from 1,2-Diphytamilsn-Glycerol-3-Phosphocholine,” Biochimica et Biophysica Acta, Vol. 1146, No. 2, 1993, pp. 178-182. doi:10.1016/0005-2736(93)90353-2
[11] A. Balows, H. G. Truper, M. Dworkin, W. Harder and K.-H. Schleider, Eds., “The Prokaryotes,” 2nd Edition, Springer-Verlag, New York, 1992.
[12] K. Hausmann, “Protozoologie,” Georg Thieme Verlag Stuttgart, New York, 1085.
[13] M. V. Gusev and L. A. Mineeva, “Microbiology,” Moscow University, Russia, 1985.
[14] A. T. Atanasov, “Connection between Volume to Surface Ratio, Lifespan, Metabolic Rate and Membrane Permeability in Cells,” EMBO Conference of Cell Polarity and Membrane Traffic, Pultusk, 31March-5 April 2012.
[15] J. G. Holt, Ed., “Gram-Negative Bacteria of General, Medical or Industrial Importance,” In: Bergey’s Manual of Systematic Bacteriology, Vol. 1, William & Wilkins, Baltimore, 1984.
[16] J. G. Holt, Ed., “Gram-Positive Bacteria Other than Actinomyces,” In: Bergey’s Manual of Systematic Bacteriology, Vol. 2, William & Wilkins, Baltimore, 1986.
[17] J. G. Holt, Ed., “Archaeobacteria, Cyanobacteria and Remaining Gram-Negative Bacteria,” In: Bergey’s Manual of Systematic Bacteriology, Vol. 3, William & Wilkins, Baltimore, 1989.
[18] J. G. Holt, Ed., “Actinomycetes,” In: Bergey’s Manual of Systematic Bacteriology, Vol. 4, William & Wilkins, Baltimore, 1989.
[19] A. T. Atanasov, “Does the Volume (Surface Lifespan) Ratio in Living Organisms Is Correlated to Minimum Membrane Permeability of Their Cells?” Trakia Journal of Sciences, Vol. 10, No. 1, 2012, pp. 134-145.
[20] D. T. Clarkson, “Ion Transport and Cell Structure in Plants,” McGraw-Hill Book Company (UK) Limited, London, 1974.
[21] K. J. Sweadner and S. M. Goldin, “Active Transport of Sodium and Potassium Ions-Mechanism, Function and Regulation,” New England Journal of Medicine, Vol. 302, No. 14, 1980, pp. 777-783.
[22] J. Brunner, D. E. Graham, H. Hauser and G. Semenza, “Ion and Sugar Permeability of Lecithin bI-layers: Comparison of Curved and Planar Bilayers,” Journal of Membrane Biology, Vol. 57, No. 2, 1980, pp. 133-141.
[23] A. J. M. Driessen, J. L. C. M. Vossemberg and W. N. Konings, “Membrane Composition and Ion-Permeability in Extremophiles,” FEMS Microbiology Reviews, Vol. 18, No. 2-3, 1996, pp. 139-148. doi:10.1111/j.1574-6976.1996.tb00232.x
[24] J. L. C. M. Van de Vossenberg, A. J. M. Driessen, W. D. Grant and W. N. Konings, “Lipid Membranes from Halophilic and Alkali-Halophilic Archaea Have a Low H+ and Na+ Permeability at High Salt Concentration,” Extremophiles, Vol. 3, No. 4, 1999, pp. 253-257. doi:10.1007/s007920050124
[25] A. T. Atanasov, “Scaling of Biological Space and Time: Volume to Surface Ratio in Living Organisms Is Proportional to Lifespan,” Trakia Journal of Sciences, Vol. 10, No. 2, 2012, pp. 36-47.
[26] K. Schmidt-Nielsen, “Scaling, Why Is Animal Size so Important?” Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney, 1984.
[27] K. Simek, J. Vrba, J. Pernthaler, T. Posch, P. Hartman, J. Nedoma and R. Psenner, “Morphological and Compositional Shifts in an Experimental Bacterial Community Influenced by Protists with Contrasting Feeding Model,” Applied and Environmental Microbiology, Vol. 63, No. 2, 1997, pp. 587-595.
[28] N. Fujiwara, “Origin of the Scaling Rule for Fundamental Organisms Based on Thermodynamics,” Biosystems, Vol. 70, No. 1, 2003, pp. 1-7. doi:10.1016/S0303-2647(03)00029-7
[29] R. K. Thaner, D. Moller-Zinkhan and A. M. Spormann, “Biochemistry of Acetate Catabolism in Anaerobic Chemotrophic bacteria,” Annual Reviews of Microbiology, Vol. 43, 1989, pp. 43-67. doi:10.1146/annurev.mi.43.100189.000355
[30] D. O. Mountfort and R. A. Asher, “Effect of Inorganic Sulfide on the Growth and Metabolism of Methanosarcina barkeri Strain DM,” Applied and Environmental Microbiology, Vol. 37, No. 4, 1979, pp.670-675.
[31] I. G. Duggin, S. A. McCallum and S. D. Bell, “Chromosome Replication Dynamics in the Archaeon Sulfolobus acidocaldarius,” Proceedings of the National Academy of Sciences of the United State of America, Vol. 105, No. 43, 2008, pp. 16737-16742. doi:10.1073/pnas.0806414105
[32] D. W. Grogan, G. T. Carver and J. W. Drake, “Genetic Fidelity under Harsh Conditions: Analyses of Spontaneous Mutation in the Thermoacidophilic Archaeon Sulfolobus acidocaldarius,” Proceedings of the National Academy of Sciences of the United State of America, Vol. 98, No. 14, 2001, pp. 7928-7933. doi:10.1073/pnas.141113098
[33] K. Alain, V. T. Marteinsson, M. L. Miroshnichenko, E. A. Bonch-Osmolovskaya, D. Prieur and J.-L. Birrien, “Marinitoga piezophila sp. nov., a Rod-Shaped, Thermopiezophilic Bacterium Isolated under High Hydrostatic Pressure from a Deep-Sea Hydrothermal Vent,” Evolutionary Microbiology, Vol. 52, No. 4, 2002, pp. 1331-1339. doi:10.1099/ijs.0.02068-0
[34] G. Fiala and K. O. Stetter, “Pyroccocus furiosus sp: nov. Represents a Novel Genus of Marine Heterotrophic Archaebacteria Growing Optimally at 100℃,” Archives of Microbiology, Vol. 145, No. 1, 1986, pp. 56-61. doi:10.1007/BF00413027
[35] S. Flint, J. Palmer, K. Bloemen, J. Brooks and R. Crawford, “The Growth of Bacillus stearothermophilus on Stainless Steel,” Journal of Applied Microbiology, Vol. 90, No. 2, 2001, pp. 151-157.
[36] P. Dantigny, “Dimensionless Analyses of the Microbial Growth Rate Dependence on Suboptimal Temperature,” Journal of Industrial Microbiology and Biotechnology, Vol. 21, No. 4-5, 1998, pp. 215-218. doi:10.1038/sj.jim.2900572
[37] M. Ginsburg, L. Sachs and B. Z. Ginsburg, “Ion Metabolism in a Halobacterium,” The Journal of General Physiology, Vol. 55, No. 2, 1970, pp. 187-207. doi:10.1085/jgp.55.2.187
[38] U. Henning, “Determination of Cell Shape in Bacteria,” Annual Reviews in Microbiology, Vol. 29, 1975, pp. 45-60. doi:10.1146/annurev.mi.29.100175.000401
[39] P. E. Chimiklis and R. L. Heath, “Ozone-Induced Loss of Intracellular Potassium Ion from Chlorella sorokiniana,” Plant Physiology, Vol. 56, No. 6, 1975, pp. 723-727. doi:10.1104/pp.69.1.229
[40] O. N. Peled, “Survival of Saccharomyces cerevisiae Y5 during Starvation in the Presence of Osmotic Supports,” Applied and Environmental Microbiology, Vol. 50, No. 3, 1985, pp. 713-716.
[41] I. Priyadarshani, D. Sahu and B. Rath, “Algae in Aquaculture,” International Journal of Health Sciences and Research, Vol. 2, No. 1, 2012, pp. 108-114.
[42] M. Gimmler, “Primary Sodium Plasma Membrane AT-Pases in Salt-Tolerant Algae: Fact and Functions,” Journal of Experimental Botany, Vol. 51, No. 348, 2000, pp. 1171-1178. doi:10.1093/jexbot/51.348.1171
[43] T. Honjo and K Tabata, “Growth Dynamics of Olisthodiscus luteus in Outdoor Tanks with Flowing Coastal Water and in Small Vessels,” Lymnology and Oceanography, Vol. 30, No. 3, 1985, pp. 653-664.
[44] E. Orias, E. P. Hamilton and J. D. Orias, “Tetrahymena as a Laboratory Organisms: Useful Strains, Cell Cultures and Cell Line Maintenance,” Methods in Cell Biology, Vol. 62, 1999, pp. 189-211. doi:10.1016/S0091-679X(08)61530-7
[45] D. L. Bruce and J. M. Marshall Jr., “Some Ionic and Bioelectric Properties of the Amoeba Chaos Chaos,” The Journal of General Physiology, Vol. 49, No. 1, 1965, pp. 151-178. doi:10.1085/jgp.49.1.151
[46] J. L. C. M. Van de Vossenberg, A. J. M. Driessen, W. D. Grant and W. N. Konings, “Lipid Membranes from Halophilic and Alkali-Halophilic Archaea Have a Low H+ and Na+ Permeability at High Salt Concentration,” Extremophiles, Vol. 3, No. 4, 1999, pp. 253-257. doi:10.1007/s007920050124
[47] J. A. Balschi, V. P. Cikillo and C. S. Springer Jr., “Direct High-Resolution Nuclear Magnetic Resonance Studies of Cation Transport in Vivo: Na+ Transport in Yeast Cells,” Biophysical Journal, Vol. 38, No. 3, 1982, pp. 323-326. doi:10.1016/S0006-3495(82)84566-9
[48] P. B. Dunham and F. M. Child, “Ion Regulation in Tetrahymena,” The Biological Bulletin, Vol. 121, No. 1, 1961, pp. 129-140. doi:10.2307/1539465
[49] J. L. C. M. Van de Vossemberg, T. Ubbink-Kok, M. G. L. Elferink, A. J. M. Driessen and W. N. Konnings, “Ion Permeability of the Cytoplasmatic Membrane Limits the Maximum Growth Temperature of Bacteia and Archaea,” Molecular Microbiology, Vol. 18, No. 5, 1995, pp. 925-932.
[50] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson, “Molecular Biology of the Cell,” 3rd Edition, Garland Science, New York, 1994.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.