Share This Article:

Signal Efficiency in Gradient Index Lens Based Two Photon Microscopy

Abstract Full-Text HTML XML Download Download as PDF (Size:2310KB) PP. 43-50
DOI: 10.4236/ojbiphy.2013.31A005    4,004 Downloads   8,390 Views   Citations

ABSTRACT

Gradient index (GRIN) lenses are often used as an optical relay to a sample at a location that is not accessible for a standard microscope. This capability is turning them into an important enabling technology that extends many optical imaging modalities like harmonic laser scanned imaging with micro endoscopic in vivo capabilities as needed in research and diagnostics. These micro endoscopic imaging variants however rely on the light scattering capability of the underlying tissue. Further complications arise from an increased number of optical interfaces and the overall optical performance of a GRIN rod. We have therefore performed a quantitative comparison of the back-scattered second harmonic generation (SHG) signal intensity generated in skin and low-scattering muscle tissue, both obtained with a standard two photon laser scanning microscope (LSM) and a GRIN lens based LSM. We report that the GRIN lens based system sees approximately 1/4 of the net two photon signal detected by the standard LSM. We expect that this value can be generalized to other LSM techniques enhanced by GRIN technology and encourage its use in experimental situations with standard LSM signal to noise ratios of four or higher.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Wingert, H. Seim, S. Schürmann, R. Fink and M. Vogel, "Signal Efficiency in Gradient Index Lens Based Two Photon Microscopy," Open Journal of Biophysics, Vol. 3 No. 1A, 2013, pp. 43-50. doi: 10.4236/ojbiphy.2013.31A005.

References

[1] K. Konig, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle and M. Kaatz, “Clinical Two-Photon Microendoscopy,” Microscopy Research and Technique, Vol. 70, No. 5, 2007, pp. 398-402. doi:10.1002/jemt.20445
[2] P. Kim, M. Puoris’haag, D. Coté, C. P. Lin and S. H. Yun, “In Vivo Confocal and Multiphoton Microendoscopy,” Journal of Biomedical Optics, Vol. 13, No. 1, 2008, Article ID: 010501. doi:10.1117/1.2839043
[3] Y. Wu, J. Xi, M. J. Cobb and X. Li, “Scanning Fiber-Optic Nonlinear Endomicroscopy with Miniature Aspherical Compound Lens and Multimode Fiber Collector,” Optics Letters, Vol. 34, No. 7, 2009, pp. 953-955. doi:10.1364/OL.34.000953
[4] C. Wang and N. Ji, “Pupil-Segmentation-Based Adaptive Optical Correction of a High-Numerical-Aperture Gradient Refractive Index Lens for Two-Photon Fluorescence Endoscopy,” Optics Letters, Vol. 37, No. 11, 2012, pp. 2001-2003. doi:10.1364/OL.37.002001
[5] D. M. Huland, C. M. Brown, S. S. Howard, D. G. Ouzounov, I. Pavlova, K. Wang, D. R. Rivera, W. W. Webb and C. Xu, “In Vivo Imaging of Unstained Tissues Using Long Gradient Index Lens Multiphoton Endoscopic Systems,” Biomedical Optics Express, Vol. 3, No. 5, 2012, pp. 1077-1085. doi:10.1364/BOE.3.001077
[6] C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzounov, W. O. Williams, S. Mohanan, W. W. Webb and C. Xu, “In Vivo Imaging of Unstained Tissues Using a Compact and Flexible Multiphoton Microendoscope,” Journal of Biomedical Optics, Vol. 17, No. 4, 2012, Article ID: 040505. doi:10.1117/1.JBO.17.4.040505
[7] M. E. Llewellyn, R. P. J. Barretto, S. L. Delp and M. J. Schnitzer, “Minimally Invasive High-Speed Imaging of Sarcomere Contractile Dynamics in Mice and Humans,” Nature, Vol. 454, No. 7205, 2008, pp. 784-788. doi:10.1038/nature07104
[8] S. V. Plotnikov, A. M. Kenny, S. J. Walsh, B. Zubrowski, C. Joseph, V. L. Scranton, G. A. Kuchel, D. Dauser, M. Xu, C. C. Pilbeam, D. J. Adams, R. P. Dougherty, P. J. Campagnola and W. A. Mohler, “Measurement of Muscle Disease by Quantitative Second-Harmonic Generation Imaging,” Journal of Biomedical Optics, Vol. 13, No. 4, 2008, Article ID: 044018. doi:10.1117/1.2967536
[9] O. Friedrich, M. Both, C. Weber, S. Schürmann, M. D. H. Teichmann, F. von Wegner, R. H. A. Fink, M. Vogel, J. S. Chamberlain and C. Garbe, “Microarchitecture Is Severely Compromised But Motor Protein Function Is Preserved in Dystrophic Mdx Skeletal Muscle,” Biophysical Journal, Vol. 98, No. 4, 2010, pp. 606-616. doi:10.1016/j.bpj.2009.11.005
[10] W. Denk, J. H. Strickler and W. W. Webb, “Two-Photon Laser Scanning Fluorescence Microscopy,” Science, Vol. 248, No. 4951, 1990, pp. 73-76. doi:10.1126/science.2321027
[11] A. Zoumi, A. Yeh and B. J. Tromberg, “Imaging Cells and Extracellular Matrix in Vivo by Using Second-Harmonic Generation and Two-Photon Excited Fluorescence,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 99, No. 17, 2002, pp. 11014-11019. doi:10.1073/pnas.172368799
[12] W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman and W. W. Webb, “Live Tissue Intrinsic Emission Microscopy Using Multiphoton-Excited Native Fluorescence and Second Harmonic Generation,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 12, 2003, pp. 7075-7080. doi:10.1073/pnas.0832308100
[13] S.-H. Chia, C.-H. Yu, C.-H. Lin, N.-C. Cheng, T.-M. Liu, M.-C. Chan, I.-H. Chen and C.-K. Sun, “Miniaturized Video-Rate Epi-Third-Harmonic-Generation Fiber-Microscope,” Optics Express, Vol. 18, No. 16, 2010, pp. 17382-17391. doi:10.1364/OE.18.017382
[14] G. Liu, K. Kieu, F. W. Wise and Z. Chen, “Multiphoton Microscopy System with a Compact Fiber-Based Femtosecond-Pulse Laser and Handheld Probe,” Journal of Biophotonics, Vol. 4, No. 1-2, 2010, pp. 34-39. doi:10.1002/jbio.201000049
[15] M. Rehberg, F. Krombach, U. Pohl and S. Dietzel, “Signal Improvement in Multiphoton Microscopy by Reflection with Simple Mirrors near the Sample,” Journal of Biomedical Optics, Vol. 15, No. 2, 2010, Article ID: 026017. doi:10.1117/1.3374337
[16] S. Roth and I. Freund, “Second Harmonic Generation in Collagen,” Journal of Chemical Physics, Vol. 70, No. 4, 1979, pp. 1637-1643. doi:10.1063/1.437677
[17] P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophysical Journal, Vol. 82, No. 1, 2002, pp. 493-508. doi:10.1016/S0006-3495(02)75414-3
[18] M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink and D. Uttenweiler, “Second Harmonic Imaging of Intrinsic Signals in Muscle Fibers in Situ,” Journal of Biomedical Optics, Vol. 9, No. 5, 2004, pp. 882-892. doi:10.1117/1.1783354
[19] S. V. Plotnikov, A. C. Millard, P. J. Campagnola and W. A. Mohler, “Characterization of the Myosin-Based Source for Second-Harmonic Generation from Muscle Sarcomeres,” Biophysical Journal, Vol. 90, No. 2, 2006, pp. 693-703. doi:10.1529/biophysj.105.071555
[20] T. Boulesteix, E. Beaurepaire, M.-P. Sauviat and M.-C. Schanne-Klein, “Second-Harmonic Microscopy of Unstained Living Cardiac Myocytes: Measurements of Sarcomere Length with 20-nm Accuracy,” Optics Letters, Vol. 29, No. 17, 2004, pp. 2031-2033. doi:10.1364/OL.29.002031
[21] G. Recher, D. Rouède, C. Tascon, L.-A. D’Amico and F. Tiaho, “Double Band Sarcomeric SHG Pattern Induced by Adult Skeletal Muscles Alteration during Myofibrils Preparation,” Journal of Microscopy, Vol. 241, No. 2, 2011, 207-211. doi:10.1111/j.1365-2818.2010.03425.x
[22] S. Schürmann, F. V. Wegner, R. H. A. Fink, O. Friedrich and M. Vogel, “Second Harmonic Generation Microscopy Probes Different States of Motor Protein Interaction in Myofibrils,” Biophysical Journal, Vol. 99, No. 6, 2010, pp. 1842-1851. doi:10.1016/j.bpj.2010.07.005
[23] L. Moreaux, O. Sandre, M. Blanchard-Desce and J. Mertz, “Membrane Imaging by Simultaneous Second-Harmonic Generation and Two-Photon Microscopy,” Optics Letters, Vol. 25, No. 5, 2000, pp. 320-322. doi:10.1364/OL.25.000320
[24] L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce and J. Mertz, “Coherent Scattering in Multi-Harmonic Light Microscopy,” Biophysical Journal, Vol. 80, No. 3, 2001, pp. 1568-1574. doi:10.1016/S0006-3495(01)76129-2
[25] F. Légaré, C. Pfeffer and B. R. Olsen, “The Role of Backscattering in SHG Tissue Imaging,” Biophysical Journal, Vol. 93, No. 4, 2007, pp. 1312-1320. doi:10.1529/biophysj.106.100586
[26] R. LaComb, O. Nadiarnykh, S. Carey and P. J. Campagnola, “Quantitative Second Harmonic Generation Imaging and Modeling of the Optical Clearing Mechanism in Striated Muscle and Tendon,” Journal of Biomedical Optics, Vol. 13, No. 2, 2008, Article ID: 021109. doi:10.1117/1.2907207
[27] S. Plotnikov, V. Juneja, A. B. Isaacson, W. A. Mohler and P. J. Campagnola, “Optical Clearing for Improved Contrast in Second Harmonic Generation Imaging of Skeletal Muscle,” Biophysical Journal, Vol. 90, No. 1, 2006, pp. 328-339. doi:10.1529/biophysj.105.066944
[28] O. Nadiarnykh and P. J. Campagnola, “Retention of Polarization Signatures in SHG Microscopy of Scattering Tissues through Optical Clearing,” Optics Express, Vol. 17, No. 7, 2009, pp. 5794-5806. doi:10.1364/OE.17.005794
[29] F. von Wegner, S. Schurmann, R. Fink, M. Vogel and O. Friedrich, “Motor Protein Function in Skeletal Muscle—A Multiple Scale Approach to Contractility,” IEEE Transactions on Medical Imaging, Vol. 28, No. 10, 2009, pp. 1632-1642. doi:10.1109/TMI.2009.2026171
[30] “Refractive Index Database,” http://refractiveindex.info
[31] A. Ehlers, “Klinische Anwendungen der Multiphotonen-Tomographie Humaner Haut,” Universitats-und Landesbibliothek, Saarbrücken, 2008.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.