Share This Article:

Identification of water-borne bacterial isolates for potential remediation of organophosphate contamination

Full-Text HTML XML Download Download as PDF (Size:325KB) PP. 146-152
DOI: 10.4236/abc.2013.31018    5,222 Downloads   8,087 Views   Citations

ABSTRACT

Three water-borne bacterial isolates were collected from the Houston metropolitan area. Each isolate was capable of growing upon carbon limited media inoculated with the organophosphorus (OP) compound paraoxon. All isolates were able to efficiently metabolize paraoxon and, to a lesser degree, methyl parathion to p-nitrophenol. 16S rDNA genome sequencing with universal bacterial primers identified the isolates as species belonging to the genera Aeromonas, Steno- trophomonas, or Exiguobacterium. All screened isolates harbor organophosphorus degradation (opd) genes that are approximately 99% similar over approximately 660 base pairs sequenced to one first isolated from Sphingobium fuliginis ATCC 27551 (formerly Flavobacterium sp. ATCC 27551). Additionally, two isolates KKWT11, identified as a putative Senotro- phomonas maltophilia, and KKBO11, identified as a putative Exiguobacterium indicum, were found to possess genomic DNA that closely matched a metallo- beta-lactamase that has been reported to function as a methyl parathion degradation (mpd) gene suggesting that both of these strains are prime candidates for wastewater remediation of a broad range of OP compounds.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Iyer, R. and Iken, B. (2013) Identification of water-borne bacterial isolates for potential remediation of organophosphate contamination. Advances in Biological Chemistry, 3, 146-152. doi: 10.4236/abc.2013.31018.

References

[1] Eddleston, M., Karalliedde, L., Buckley, N., Fernando, R., Hutchinson, G., Isbister, G., Konradsen, F., Murray, D., Piola, J.C., Senanayake, N., Sheriff, R., Singh, S., Siwach, S.B. and Smit, L. (2002) Pesticide poisoning in the de veloping world—A minimum pesticides list. Lancet, 360, 1163-1167. doi:10.1016/S0140-6736(02)11204-9
[2] Marrs, T.C. (2007) Toxicology of organophosphate nerve agents. In: Marrs, T.C., Maynard R.L. and Sidell F.R., Eds., Chemical Warfare Agents: Toxicology and Treatment, John Wiley & Sons Ltd., Chichester, 191-221. doi:10.1002/9780470060032.ch8
[3] World Health Organization in collaboration with the United Nations Environmental Programme (1990) Public Impact of Pesticides Used In Agriculture. WHO, Geneva.
[4] Cáceres, T., Megharaj, M., Venkateswarlu, K., Sethuna than, N. and Naidu, R. (2010) Fenamiphos and related organophosphorus pesticides: Environmental fate and toxi cology. Reviews of Environmental Contamination and Toxicology, 205, 117-162. doi:10.1007/978-1-4419-5623-1_3
[5] Ragnarsdottir, V.K. (2000) Environmental fate and toxicology of organophosphate pesticides. Journal of the Geological Society of London, 157, 859-876. doi:10.1144/jgs.157.4.859
[6] Vagi, M.C., Petsas, A.S., Kostopoulou, M.N. and Lekkas, T.D. (2010) Adsorption and desorption processes of the organophosphate pesticides, dimethoate and fenthion, onto three Greek agricultural soils. International Journal of Environmental Analytical Chemistry, 90, 369-389. doi:10.1080/03067310903194980
[7] Coupe, R.H., Manning, M.A., Foreman, W.T., Goolsby, D.A. and Majewski, M.S. (2000) Occurrence of pesticides in rain and air in urban and agricultural areas of Mississippi. April-September 1995. Science of the Total Environment, 248, 227-240. doi:10.1016/S0048-9697(99)00545-8
[8] Schipper, P.N., Vissers, M.J., van der Linden, A.M. (2008) Pesticides in groundwater and drinking water wells: Overview of the situation in the Netherlands. Water Science and Technology, 57, 1277-1286. doi:10.2166/wst.2008.255
[9] Aardema, H., Meertens, J.H., Ligtenberg, J.J., Peters Pollman, O.M., Tulleken, J.E. and Zijlstra, J.G. (2008) Organophosphorus pesticide poisonings: Cases and de velopments. Netherlands Journal of Medicine, 66, 149 153.
[10] Buckley, N.A., Karalliedde, L., Dawson, A., Senanayake, N. and Eddleston, M. (2004) Where is the evidence for treatments used in pesticide poisoning? Is clinical toxicology fiddling while the developing world burns? Journal of Toxicology—Clinical Toxicology, 42, 113-116. doi:10.1081/CLT-120028756
[11] Eddleston, M., Eyer, P., Worek, F., Mohamed, F., Sena rathna, L., von Meyer, L., Juszczak, E., Hittarage, A., Azhar, S., Dissanayake, W., Sheriff, M.H., Szinicz, L., Dawson, A.H. and Buckley, N.A. (2005) Differences between organophosphorus insecticides in human self poisoning: A prospective cohort study. Lancet, 366, 1452 1459. doi:10.1016/S0140-6736(05)67598-8
[12] Karalliedde, L. and Senanayake, N. (1989) Organophos phorus insecticide poisoning. British Journal of Anaesthesia, 63, 736-750. doi:10.1093/bja/63.6.736
[13] Singh, B.K. and Walker, K.A. (2006) Microbial degrada tion of organophosphorus compounds. FEMS Microbiol ogy Reviews, 30, 428-471. doi:10.1111/j.1574-6976.2006.00018.x
[14] Serdar, C.M., Gibson, D.T., Munnecke, D.M. and Lancaster, J.H. (1982) Plasmid involvement in parathion hy drolysis by Pseudomonas diminuta. Applied and Envi ronmental Microbiology, 44, 246-249.
[15] Harper, L.L., McDaniel, C.S., Miller, C.E. and Wild, J.R. (1988) Dissimilar plasmids isolated from Pseudomonas diminuta MG and Flavobacterium sp. (ATCC 27551) contain identical opd genes. Applied and Envi ronmental Microbiology, 54, 2586-2589.
[16] Mulbry, W.W., Kearney, P.C., Nelson, J.O. and Karns, J.S. (1987) Physical comparison of parathion hydrolase plasmids from Pseudomonas diminuta and Flavobacte rium sp. Plasmid, 18, 173-177. doi:10.1016/0147-619X(87)90046-1
[17] McDaniel, C.S., Harper, L.L. and Wild, J.R. (1988) Cloning and sequencing of a plasmid-borne gene (opd) en coding for a phosphotriesterase. Journal of Bacteriology, 170, 2306-2311.
[18] Wei, M., Zhang, J.J., Liu, H., Wang, S.J., Fu, H. and Zhou, N.Y. (2009) A transposable class 1 composite transposon carrying mph (methyl parathion hydrolase) from Pseudomonas sp. Strain WBC-3. FEMS Microbiology Letters, 292, 85-91. doi:10.1111/j.1574-6968.2008.01468.x
[19] Liu, H., Zhang, J.J., Wang, S.J., Zhang, X.E. and Zhou, N.Y. (2005) Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. Strain WBC 3. Biochemical and Biophysical Research Communications, 334, 1107-1114. doi:10.1016/j.bbrc.2005.07.006
[20] Cui, Z.L., Li, S.P. and Fu, G.P. (2001) Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Applied and Environmental Microbiology, 67, 4922-4925. doi:10.1128/AEM.67.10.4922-4925.2001
[21] Cycoń, M., Wójcik, M. and Piotrowska-Seget, Z. (2009) Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere, 76, 494-501. doi:10.1016/j.chemosphere.2009.03.023
[22] Yang, C., Liu, N., Guo, X. and Qiao, C. (2005) Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil. FEMS Microbiology Letters, 265, 118-125. doi:10.1111/j.1574-6968.2006.00478.x
[23] Siddavattam, D., Khajamohiddin, S., Manavathi, B., Pakala, S.B. and Merrick, M. (2003) Transposon-like or ganization of the plasmid-borne organophosphate degradation (opd) gene cluster found in Flavobacterium sp. Applied and Environmental Microbiology, 69, 2533 2539. doi:10.1128/AEM.69.5.2533-2539.2003
[24] Zhang, R., Cui, Z.L., Jiang, J., He, J., Gu, X. and Li, S.P. (2005) Diversity of organophosphorus pesticide-degrad ing bacteria in a polluted soil and conservation of their organophosphorus hydrolase genes. Canadian Journal of Microbiology, 51, 337-343. doi:10.1139/w05-010
[25] Zhang, R., Cui, Z.L., Zhang, X, Jiang, J., Gu, J.D. and Li, S.P. (2006) Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer. Biodegradation, 17, 465-472. doi:10.1007/s10532-005-9018-6
[26] Wilson, K. (1990) Preparation of genomic DNA from bacteria, p. 2.4.1-2.4.2. In: Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (Eds.), Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York.
[27] Baker, G.C., Smith, J.J. and Cowan, D.A. (2003) Review and re-analysis of domain-specific 16S primers. Journal of Microbiological Methods, 55, 541-555. doi:10.1016/j.mimet.2003.08.009
[28] Frank, J.A., Reich, C.I., Sharma, S., Weisbaum, J.S., Wilson, B.A. and Olson, G.J. (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied and Environmental Microbiology, 74, 2461-2470. doi:10.1128/AEM.02272-07
[29] Sprenger. W.W., Dijkstra, A., Zwart, G.J., Agterveld, M.P., Noort, P.C. and Parson, J.R. (2003) Competition of a parathion-hydrolyzing Flavobacterium with bacteria from ditch water in carbon-, nitrate and phosphate-limited continuous cultures. FEMS Microbiology Ecology, 43, 45-53. doi:10.1111/j.1574-6941.2003.tb01044.x

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.