Share This Article:

Design and Performance Analysis of an Innovative Single Basin Solar NanoStill

Abstract Full-Text HTML Download Download as PDF (Size:1033KB) PP. 88-98
DOI: 10.4236/sgre.2013.41012    5,381 Downloads   8,950 Views   Citations

ABSTRACT

The provision of fresh water is becoming an increasingly important issue in many areas of the world. Clean water is a basic human necessity, and without water life will be impossible. The rapid international developments, the industrial growth, agriculture and population explosion all over the world have resulted in a large escalation of demand for fresh water. The solar still is the most economical way to accomplish this objective. The sun’s energy heats water to the point of evaporation. When water evaporates, water vapour rises leaving the impurities like salts, heavy metals and condensate on the underside of the glass cover. Solar distillation has low yield, but safe and pure supplies of water in remote areas. The attempts are made to increase the productivity of solar still by using nanofluids and also by black paint coat- ing inside the still basin. Heat transfer enhancement in solar still is one of the key issues of energy saving and compact designs. The essential initiative is to seek the solid particles having thermal conductivity of several hundred times higher than those of conventional fluids. Recently, as an innovative material, nanosized particles have been used in sus- pension in conventional solar still water. The fluids with nanosized solid particles suspended in them are called “nanofluids”. The suspended metallic or nonmetallic nanoparticles change the transport properties, heat transfer characteristics and evaporative properties of the base fluid, The aim of this paper is to analyze and compare the enhanced performance of a single basin solar still using nanofluids with the conventional water. They greatly improve the rate of evaporation and hence the increase in efficiency.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Gnanadason, P. Kumar, V. Wilson, G. Hariharan and N. Vinayagamoorthi, "Design and Performance Analysis of an Innovative Single Basin Solar NanoStill," Smart Grid and Renewable Energy, Vol. 4 No. 1, 2013, pp. 88-98. doi: 10.4236/sgre.2013.41012.

References

[1] V. Velmurugan and K. Srithar, “Performance Analysis of Solar Stills on Various Factors Affecting the Productivity,” Renewable Energy and Sustainable Energy, Vol. 15, No. 2, 2011, pp. 1294-1304. doi:10.1016/j.rser.2010.10.012
[2] G. N. Tiwari, H. N. Singh and R. Tripathy, “Present Status of Solar Distillation,” Solar Energy, Vol. 75, No. 5, 2003, pp. 367-373. doi:10.1016/j.solener.2003.07.005
[3] O. O. Badran and M. M. Abu-Khader, “Evaluating Thermal Performance of a Single Slope Solar Still,” Heat and Mass Transfer, Vol. 43, No. 10, 2007, pp. 985-995. doi:10.1007/s00231-006-0180-0
[4] S. Abdallah, O. Badran and M. M. Abu-Khader, “Performance Evaluation of a Modified Design of a Single-Basin Solar Still,” Desalination, Vol. 219, No. 219, 2008, pp. 222-230. doi:10.1016/j.desal.2007.05.015
[5] V. Velmurugan, K. K. J. Naveen, H. T. Noorul and K. Srithar, “Performance Analysis in Stepped Solar Still for Effluent Desalination,” Energy, Vol. 34, No. 9, 2011, pp. 1179-1186. doi:10.1016/j.energy.2009.04.029
[6] K. K. Murugavel, Kn. K. S. K. Chockalingam and K. Srithar, “Progresses in Improving the Effectiveness of the Single Basin Passive Solar Still,” Desalination, Vol. 220, No. 1-3, 2008, pp. 677-686. doi:10.1016/j.desal.2007.01.062
[7] M. K. Gnanadason, P. S. Kumar, G. Sivaraman and J. E. S. Daniel, “Design and Performance Analysis of a Modified Vacuum Single Basin Solar Still,” Smart Grid and Renewable Energy, Vol. 2, No. 4, 2011, pp. 388-395. doi:10.4236/sgre.2011.24044
[8] Y. Hwang, J. K. Lee, C. H. Lee, Y. M. Jung, S. I. Cheong, C. G. Lee, B. C. Ku and S. P. Jang, “Stability and Thermal Conductivity Characteristics of Nanofluids,” Thermochimica Acta, Vol. 455, No. 1-2, 2007, pp. 70-74. doi:10.1016/j.tca.2006.11.036
[9] Y. Xuan and Q. Li, “Heat Transfer Enhancement of Nanofluids,” International Journal of Heat and Fluid Transfer, Vol. 21, No. 1, 2000, pp. 58-64. doi:10.1016/S0142-727X(99)00067-3
[10] G. M. Koilraj, P. Senthilkumar and G. Sivaraman, “Design and Performance Analysis of a Vacuum Single Basin Solar Still,” International Journal of Advanced Engineering Technology, Vol. 2, No. 4, 2011, pp. 174-181.
[11] M. K. Kalidasa, Kn. K. S. K. Chockelingam and K. Srither, “An Experimental Study on Single Basin Double Slop Simulation Solar Still within Layer of Water in the Basin,” Desalination, Vol. 220, No. 1-3, 2008, pp. 687-693. doi:10.1016/j.desal.2007.01.063
[12] R. Tripathi and G. N. Tiwari, “Thermal Modeling of Passive and Active Solar Stills for Different Depths of Water by Using Concept of Solar Fraction,” Solar Energy, Vol. 80, No. 8, 2006, pp. 956-967. doi:10.1016/j.solener.2005.08.002
[13] S. Lee, S. U. S. Choi, S. Li and J. A. Eastman, “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,” Journal of Heat Transfer, Vol. 121, No. 2, 1999, pp. 280-289. doi:10.1115/1.2825978
[14] Y. J. Hwang, Y. C. Ahn, H. S. Shin, C. G. Lee, G. T. Kim, H. S. Park and J. K. Lee, “Investigation on Characteristics of Thermal Conductivity Enhancement of Nanofluids,” Current Applied Physics, Vol. 25, No. 4, 2005, pp. 609-735. doi:10.1016/j.cap.2005.07.021
[15] M. J. Assael, C. F. Chen, N. Metaxa and W. A. Wakeham, “Thermal Conductivity of Suspensions of Carbon Nanotubes in Water,” International Journal Thermophysics, Vol. 2, No. 25, 2004, pp. 971-985. doi:10.1023/B:IJOT.0000038494.22494.04
[16] H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai and Q. Wu, “Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles,” Journal of Applied Physics, Vol. 4, No. 91, 2002, pp. 4568-4572. doi:10.1063/1.1454184
[17] C. H. Li and G. P. Peterson, “Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids),” Journal of Applied Physics, Vol. 8, No. 99, 2006, pp. 84-94.
[18] L. Jiang, L. Gao and J. Sun, “Production of Aqueous Colloidal Dispersion of Carbon Nanotubes,” Journal of Colloid Interface Science, Vol. 260, No. 1, 2003, pp. 89-94. doi:10.1016/S0021-9797(02)00176-5
[19] T. K. Hong, H. S. Yang and C. J. Choi, “Study of the Enhanced Thermal Conductivity of Fe Nanofluids,” Journal of Applied Physics, Vol. 6, No. 97, 2005, pp. 1-4.
[20] S. A. Putnam, D. G. Cahill, P. V. Braun, Z. Ge and R. G. Shimmin, “Thermal Conductivity of Nanoparticle Suspensions,” Journal of Applied Physics, Vol. 8, No. 99, 2006, pp. 84-88.
[21] E. Natarajan and R. Sathish, “Role of Nanofluids in Solar Water Heaters,” International Journal Advanced Manufacturing Technology, Vol. 8, No. 170, 2009, pp. 1876-1882. doi:10.10007s00170-008-1876-8
[22] M. K. Gnanadason, P. S. Kumar, G. Jemilda and S. R. Kumar, “Effect of Nanofluids in Vacuum Single Basin Solar Still,” International Journal of Scientific and Engineering Research, Vol. 3, No. 1, 2012, pp. 2229-5518.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.