Topological conformational changes of human papillomavirus (HPV) DNA bound to an insoluble aluminum salt—A study by low temperature PCR

Abstract

A low temperature (LoTemp?) polymerase chain reaction (PCR), conducted at cycling temperatures not to exceed 85and catalyzed by a novel highly processive HiFi? DNA polymerase with proofreading function, was used to study the topological conformational changes of the human papillomavirus (HPV) L1 gene DNA fragments bound to the insoluble amorphous aluminum hydroxyphosphate sulfate (AAHS) adjuvant in the quadrivalent HPV vaccine, Gardasil?. L1 gene DNA fragments of HPV-11, HPV-18 and HPV-16 were detected in the AAHS particles by nested PCR, but all were lacking a region that was amplifiable by an MY09 degenerate primer. In addition, a pair of degenerate consensus GP6/MY11 primers was able to amplify a target segment of the HPV-11 L1 gene DNA and the HPV-18 L1 gene DNA bound to the AAHS particles as expected for any HPV DNA in the B-conformation. However, there was no co-amplification of the HPV-16 L1 gene DNA known to coexist in the same samples. The lack of co-amplification was verified by direct DNA sequencing of the PCR amplicons. The companion HPV-16 L1 gene DNA in the same sample required repeated PCRs with a pair of modified non-degenerate GP6/ MY11 primers for detection. This melting profile of the HPV-16 L1 gene DNA was similar to that of the HPV-16 L1 gene DNA recently discovered in the postmortem blood of a young woman who suffered a sudden unexpected death 6 months after Gardasil? vaccination. The findings suggest that the topological conformational changes in the HPV L1 gene DNA residues bound to the AAHS adjuvant may be genotype-related. The special non-B-conformation may prevent the HPV-16 L1 gene DNA from being degraded in the body of the vaccine recipients after in- tramuscular injection.



Share and Cite:

Lee, S. (2013) Topological conformational changes of human papillomavirus (HPV) DNA bound to an insoluble aluminum salt—A study by low temperature PCR. Advances in Biological Chemistry, 3, 76-85. doi: 10.4236/abc.2013.31010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Vernon, S.D., Unger, E.R. and Williams, D. (2000) Comparison of human papillomavirus detection and typ ing by cycle sequencing, line blotting, and hybrid capture. Journal of Clinical Microbiology, 38, 651-655.
[2] Johnson, T., Bryder, K., Corbet, S. and Fomsgaard, A. (2003) Routine genotyping of human papillomavirus samples in Denmark. Acta Pathologica, Microbiologica et Immunologica Scandinavica, 111, 398-404. doi:10.1034/j.1600-0463.2003.t01-1-1110204.x
[3] Speich, N., Schmitt, C., Bollmann, R. and Bollmann, M. (2004) Human papillomavirus (HPV) study of 2916 cytological samples by PCR and DNA sequencing: Geno type spectrum of patients from the west German area. Journal of Clinical Microbiology, 53,125-128.
[4] Carvalho, N.O., del Castillo, D.M., Perone, C., Januário, J.N., de Melo, V.H. and Brasileiro, F.G. (2010) Comparison of HPV genotyping by type-specific PCR and sequencing. Memórias do InstitutoOswaldo Cruz, 105, 73 78. doi:10.1590/S0074-02762010000100011
[5] Lee, S.H., Vigliotti, V.S., Vigliotti, J.S. and Pappu, S. (2007) Routine human papillomavirus genotyping by DNA sequencing in community hospital laboratories. In fectious Agents and Cancer, 2, 11.
[6] Lee, S.H. (2012) Guidelines for the use of molecular tests for the detection and genotyping of human papilloma virus from clinical specimens. Methods in Molecular Biology, 903, 65-101. doi:10.1007/978-1-61779-937-2_5
[7] Lee, S.H. (2012) Detection of human papillomavirus (HPV) L1 gene DNA possibly bound to particulate aluminum adjuvant in the HPV vaccine Gardasil?. Journal of Inorganic Biochemistry, 117, 85-92. doi:10.1016/j.jinorgbio.2012.08.015
[8] Lee, S.H. (2012) Detection of human papillomavirus L1 gene DNA fragments in postmortem blood and spleen af ter Gardasil? vaccination—A case report. Advances in Bioscience and Biotechnology, 3, 1214-1224.
[9] FDA Information on Gardasil (2011) Presence of DNA fragments expected, no safety risk. http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm276859.htm
[10] Lindblad, E.B. (2004) Aluminium compounds for use in vaccines. Immunology and Cell Biology, 82, 497-505. doi:10.1111/j.0818-9641.2004.01286.x
[11] Gherardi, R.K., Coquet, M., Cherin, P., Belec, L., Moretto, P., Dreyfus, P.A., Pellissier, J.F., Chariot, P. and Authier, F.J. (2001) Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain, 124, 1821-1831. doi:10.1093/brain/124.9.1821
[12] Exley, C., Swarbrick, L., Gherardi, R.K. and Authier, F.J. (2009) A role for the body burden of aluminium in vac cine-associated macrophagicmyofasciitis and chronic fatigue syndrome. Medical Hypotheses, 72, 135-139. doi:10.1016/j.mehy.2008.09.040
[13] Gherardi, R.K. and Authier, F.J. (2012) Macrophagic myofasciitis: Characterization and pathophysiology. Lupus, 21,184-189. doi:10.1177/0961203311429557
[14] Manos, M.M., Ting, Y., Wright, D.K., Lewis, A.J., Bro ker, T.R. and Wolinsky, S.M. (1989) Use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. Cancer Cells, 7, 209-214.
[15] Snijders, P.J., van den Brule, A.J., Schrijnemakers, H.F., Snow, G., Meijer, C.J. and Walboomers, J.M. (1990) The use of general primers in the polymerase chain reaction permits the detection of a broad spectrum of human papillomavirus genotypes. Journal of General Virology, 71, 173-181. doi:10.1099/0022-1317-71-1-173
[16] Burrell, L.S., Johnston, C.T., Schulze, D., Klein, J., White, J.L. and Hem, S.L. (2001) Aluminium phosphate adjuvants prepared by precipitation at constant pH, Part I: Composition and structure. Vaccine, 19, 275-281. doi:10.1016/S0264-410X(00)00160-2
[17] Burrell, L.S., Johnston, C.T., Schulze, D., Klein, J., White, J.L. and Hem, S. L. (2001) Aluminium phosphate adjuvants prepared by precipitation at constant pH. Part II: Physicochemical properties. Vaccine, 19, 282-287. doi:10.1016/S0264-410X(00)00162-6
[18] Caulfield, M.J. , Shi, L., Wang, S., Wang, B., Tobery, T. W., Mach, H., Ahl, P.L., Cannon, J.L., Cook, J.C., Heinrichs, J.H. and Sitrin, R.D. (2007) Effect of alternative aluminum adjuvants on the absorption and immunogenicity of HPV16 L1 VLPs in mice. Human Vaccines, 3, 139-146. doi:10.4161/hv.3.4.4309
[19] McCormack, P.L. and Joura, E.A. (2010) Quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine (Gardasil?): A review of its use in the prevention of premalignant genital lesions, genital cancer and genital warts in women. Drugs, 70, 2449-2474. doi:10.2165/11204920-000000000-00000
[20] Health Canada (2007) Summary basis of decision (SBD) GardasilTM. http://www.hc-sc.gc.ca/dhp-mps/alt_formats/hpfb-dgpsa/pdf/prodpharma/sbd_smd_2007_gardasil_102682-eng.pdf
[21] Egan, P.M., Belfast, M.T., Giménez, J.A., Sitrin, R.D. and Mancinelli, R.J. (2009) Relationship between tight ness of binding and immunogenicity in an aluminum containing adjuvant-adsorbed hepatitis B vaccine. Vaccine, 27, 3175-3180. doi:10.1016/j.vaccine.2009.03.054
[22] Zhang, R-Y., Liu, Y., Pang, D-W., Cai, R-X. and Qi, Y-P. (2002) Spectroscopic and voltammetric study on the binding of aluminium(III) to DNA. Analytical Sciences, 18, 761-766. doi:10.2116/analsci.18.761
[23] Ge, S., Gong, B., Cai, X., Yang, X., Gan, X., Tong, X., Li, H., Zhu, M., Yang, F., Zhou, H. and Hong, G. (2012) Prevent cervical cancer by screening with reliable human papillomavirus detection and genotyping. Cancer Medicine, 1, 59-67. doi:10.1002/cam4.9
[24] Lee, S.H., Vigliotti, V.S., Vigliotti, J.S. and Pappu, S. (2009) Validation of human papillomavirus genotyping by signature DNA sequence analysis. BMC Clinical Pathology, 9, 3. doi:10.1186/1472-6890-9-3
[25] Karlik, S.J., Eichhorn, G.L., Lewis, P.N. and Crapper, D.R. (1980) Interaction of aluminum species with deoxy ribonucleic acid. Biochemistry, 19, 5991-5998. doi:10.1021/bi00567a008
[26] Latha, K.S., Anitha, S., Rao, K.S. and Viswamitra, M.A. (2002) Molecular understanding of aluminum-induced topological changes in (CCG)12 triplet repeats: relevance to neurological disorders, Biochimica et Biophysica Acta, 1588, 56-64. doi:10.1016/S0925-4439(02)00133-3
[27] Andre, P., Kim, A., Khrapko, K. and Thilly, W.G. (1997) Fidelity and mutational spectrum of Pfu DNA polymerase on a human mitochondrial DNA sequence. Genome Re search, 7, 843-852.
[28] Lindahl, T. and Nyberg, B. (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry, 11, 3610 3618. doi:10.1021/bi00769a018
[29] Lindahl, T. and Nyberg, B. (1974) Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Bio chemistry, 13, 3405-3410. doi:10.1021/bi00713a035
[30] Mach, H., Volkin, D.B., Troutman, R.D., Wang, B., Luo, Z., Jansen, K.U. and Shi, L. (2006) Disassembly and re assembly of yeast-derived recombinant human papillo mavirus virus-like particles (HPV VLPs). Journal of Pharmaceutical Sciences, 95, 2195-2206. doi:10.1002/jps.20696
[31] Bryan, J.T. (2007) Developing an HPV vaccine to pre vent cervical cancer and genital warts. Vaccine, 25, 3001 3006. doi:10.1016/j.vaccine.2007.01.013
[32] Einstein, M.H., Baron, M., Levin, M.J., Chatterjee, A., Edwards, R.P., Zepp, F., Carletti, I., Dessy, F.J., Trofa, A.F., Schuind, A. and Dubin, G. and HPV-010 Study Group (2009) Comparison of the immunogenicity and safety of Cervarix and Gardasil human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18 45 years. Human Vaccines, 5, 705-719. doi:10.4161/hv.5.10.9518
[33] Giuliano, A.R., Lazcano-Ponce, E., Villa, L., Nolan, T., Marchant, C., Radley, D., Golm, G., McCarroll, K., Yu, J., Esser, M.T., Vuocolo, S.C. and Barr, E. (2007) Impact of baseline covariates on the immunogenicity of a quadrivalent (types 6, 11, 16, and 18) human papillo mavirus virus-like-particle vaccine. Journal of Infectious Diseases, 196, 1153-1162. doi:10.1086/521679
[34] Villa, L.L., Ault, K.A., Giuliano, A.R., Costa, R.L., Petta, C.A., Andrade, R.P., Brown, D.R., Ferenczy, A., Harper, D.M., Koutsky, L.A., Kurman, R.J., Lehtinen, M., Malm, C., Olsson, S.E., Ronnett, B.M., Skjeldestad, F.E., Stein wall, M., Stoler, M.H., Wheeler, C.M., Taddeo, F.J., Yu, J., Lupinacci, L., Railkar, R., Marchese, R., Esser , M.T., Bryan, J., Jansen, K.U., Sings, H.L., Tamms, G.M., Saah, A.J. and Barr, E. (2006) Immunologic responses following administration of a vaccine targeting human papillo mavirus types 6, 11, 16, and 18. Vaccine, 24, 5571-5583. doi:10.1016/j.vaccine.2006.04.068
[35] Kwissa, M., Lindblad, E.B., Schirmbeck, R. and Reimann, J. (2003) Codelivery of a DNA vaccine and a protein vaccine with aluminum phosphate stimulates a potent and multivalent immune response. Journal of Molecular Medicine, 81, 502-510. doi:10.1007/s00109-003-0452-9
[36] Davis, H.L., Weeratna, R., Waldschmidt, T.J., Tygrett, L., Schorr, J. and Krieg, A.M. (1998) CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. Journal of Immunology, 160, 870-876.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.