Share This Article:

Intense Long-Lived Fluorescence of 1,6-Diphenyl-1,3,5-Hexatriene: Emission from the S1-State Competes with Formation of O2 Contact Charge Transfer Complex

Abstract Full-Text HTML XML Download Download as PDF (Size:771KB) PP. 59-67
DOI: 10.4236/ojpc.2013.31008    3,145 Downloads   5,402 Views  

ABSTRACT

The fluorescence kinetics of 1,6-diphenyl-1,3,5-hexatriene (DPH) dissolved in cyclohexane was investigated as a function of temperature, concentration and 355 nm excitation pulse energy. At concentrations above 2.5 μM and excitation energies above 1 mJ a long-lived, very intense emission, which appears within less than 5 ns and lasts up to 70 ns, is observed. During the first 50 ns the decay does not follow an exponential but rather a linear behaviour. In oxygen saturated solutions the long-lived emission is suppressed and solely short-lived fluorescence with τ < 5 ns can be detected. A kinetic simulation was performed, based on a model whereupon the long-lived emission originates from the S1-state and competes with the formation of DPH-O2 contact charge-transfer complexes and intersystem crossing which both quench the fluorescence. Our investigations show that even the small amount of oxygen dissolved in nitrogen saturated solutions has a distinct influence on the fluorescence kinetics of DPH.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Hunger and K. Kleinermanns, "Intense Long-Lived Fluorescence of 1,6-Diphenyl-1,3,5-Hexatriene: Emission from the S1-State Competes with Formation of O2 Contact Charge Transfer Complex," Open Journal of Physical Chemistry, Vol. 3 No. 1, 2013, pp. 59-67. doi: 10.4236/ojpc.2013.31008.

References

[1] S. M. Bachilo, C. W. Spangler, and T. Gillbro, “Excited State Energies and Internal Conversion in Diphenylpolyenes: from Diphenylbutadiene to Diphenyltetradecaheptaene,” Chemical Physics Letters, Vol. 283, No. 3-4, 1998, pp. 235-242. doi:10.1016/S0009-2614(97)01373-0
[2] P. O. Andersson, et al., “Dual Singlet State Emission in a Series of Mini-Carotenes,” Journal of Luminescence, Vol. 51, No. 1-3, 1992, pp. 11-20. doi:10.1016/0022-2313(92)90014-Z
[3] R. L. Christensen, et al., “S1 and S2 States of Apo- and Diapocarotenes,” The Journal of Physical Chemistry A, Vol. 103, No. 14, 1999, pp. 2399-2407.
[4] W. Mizukami, et al., “Ab initio Study of the Excited Singlet States of All-trans α,ω-Diphenylpolyenes with One to Seven Polyene Souble Bonds: Simulation of the Spectral Data within Franck-Condon Approximation,” Journal of Chemical Physics, Vol. 131, No. 17, 2009, pp. 10. doi:10.1063/1.3261729
[5] T. Polivka and V. Sundstrom, “Dark Excited States of Carotenoids: Consensus and Controversy,” Chemical Physics Letters, Vol. 477, No. 1-3, 2009, pp. 1-11. doi:10.1016/j.cplett.2009.06.011
[6] M. Yoshizawa, et al., “Ultrafast Relaxation Kinetics of Excited States in a Series of Mini- and Macro-β-Carotenes,” Physical Review B, Vol. 67, No. 17, 2003, p. 8.
[7] H. A. Frank, et al., “Carotenoid-to-Bacteriochlorophyll Singlet Energy Transfer in Carotenoid-Incorporated B850 Light-Harvesting Complexes of Rhodobacter sphaeroides R-26.1,” Photochemistry and Photobiology, Vol. 57, No. 1, 1993, pp. 49-55. doi:10.1111/j.1751-1097.1993.tb02254.x
[8] M. Ricci, et al., “Internal Conversion and Energy Transfer Dynamics of Spheroidene in Solution and in the LH-1 and LH-2 Light-Harvesting Complexes,” Chemical Physics Letters, Vol. 259, No. 3-4, 1996, pp. 381-390. doi:10.1016/0009-2614(96)00832-9
[9] S. Yamashita, A. G. Szabo and P. Cavatorta, “Temperature Dependence and Decay Kinetics of the High-Energy Band in DPH Fluorescence,” Bulletin of the Chemical Society of Japan , Vol. 62, No. 9, 1989, pp. 2849-2853. doi:10.1246/bcsj.62.2849
[10] S. J. Strickler and R. A. Berg, “Relationship between Absorption Intensity and Fluorescence Lifetime of Molecules,” The Journal of Physical Chemistry, Vol. 37, No. 4, 1962, pp. 814-822. doi:10.1063/1.1733166
[11] E. D. Cehelnik, et al., “1,6-Diphenyl-1,3,5-hexatriene as a Fluorescence Standard,” Chemical Physics Letters, Vol. 27, No. 4, 1974, pp. 586-588. doi:10.1016/0009-2614(74)80311-8
[12] B. Hudson and B. Kohler, “Linear Polyene Electronic Structure and Spectroscopy,” Annual Review of Physical Chemistry, Vol. 25, No. 1974, pp. 437-460. doi:10.1146/annurev.pc.25.100174.002253
[13] B. S. Hudson and B. E. Kohler, “A Low-Lying Weak Transition in the Polyene α,ω-Diphenyloctatetraene,” Chemical Physics Letters, Vol. 14, No. 3, 1972, pp. 299-304.
[14] B. S. Hudson and B. E. Kohler, “Polyene Spectroscopy: The Lowest Energy Excited Singlet State of Diphenyloctateratene and Other Linear Polyenes,” The Journal of Physical Chemistry, Vol. 59, No. 9, 1973, pp. 4984-5002. doi:10.1063/1.1680717
[15] P. C. Alford and T. F. Palmer, “Photophysics of Derivatives of all-trans-1,6-Diphenyl-1,3,5-hexatriene (DPH); Part 1.—Model involving Fluorescence from S2 and S1 Excited States,” Journal of the Chemical Society, Faraday Transactions 2, Vol. 79, No. 1983, pp. 433-447. doi:10.1039/f29837900433
[16] B. E. Kohler and T. A. Spiglanin, “Structure and Dynamics of Excited Singlet States of Isolated Diphenylhexatriene,” The Journal of Physical Chemistry, Vol. 80, No. 11, 1984, pp. 5465-5471. doi:10.1063/1.446655
[17] M. Kleinschmidt, et al., “Parallel Multireference Configuration Interaction Calculations on Mini-β-Carotenes and β-Carotene,” The Journal of Physical Chemistry, Vol. 130, No. 4, 2009, pp. 044708. doi:10.1063/1.3062842
[18] B. Küpper, et al., “On the Photophysics of 1,6-Diphenyl-1,3,5-Hexatriene Isomers and Rotamers,” ChemPhys-Chem, Vol. 12, No. 10, 2011, pp. 1872-1879. doi:10.1002/cphc.201001068
[19] W. A. Yee, et al., “Femtosecond Transient Absorption Studies of Diphenylpolyenes. Direct Detection of S2→S1 Radiationless Conversion in Diphenylhexatriene and Diphenyloctatetraene,” Chemical Physics Letters, Vol. 276, No. 5-6, 1997, pp. 430-434. doi:10.1016/S0009-2614(97)00842-7
[20] Y. Hirata, et al., “Energy Gap Dependence of the S2→S1 Internal Conversion of α,ω-Diphenylpolyenes (N=3-8) in Solution Phase,” Chemical Physics Letters, Vol. 308, No. 3-4, 1999, pp. 176-180.
[21] S. M. Bachilo, E. V. Bachilo and T. Gillbro, “Spectral Shape of Diphenylpolyene Fluorescence and Mixing of the S1 and S2 States,” Chemical Physics, Vol. 229, No. 1, 1998, pp. 75-91.
[22] T. Itoh, “Evidence for the Coexistence of Two Different Mechanisms for the Occurrence of Anti-Kasha S2 (11Bu) Fluorescence from α,ω-Diphenylpolyenes,” The Journal of Physical Chemistry, Vol. 121, No. 14, 2004, pp. 6956-6960.
[23] J. Saltiel, et al., “Evidence for Ground-State S-Cis Conformers in the Fluorescence Spectra of All-trans-1,6-diphenyl-1,3,5-hexatriene,” Journal of the American Chemical Society, Vol. 114, No. 10, 1992, pp. 3607-3612. doi:10.1021/ja00036a004
[24] J. Saltiel, et al., “Cis-Trans Photoisomerization of the 1,6-Diphenyl-1,3,5-hexatrienes in the Triplet State. The Quantum Chain Mechanism and the Structure of the Triplet State,” The Journal of Physical Chemistry A, Vol. 102, No. 28, 1998, pp. 5383-5392. doi:10.1021/jp972941c
[25] J. Saltiel, et al., “Direct Photoisomerization of the 1,6-Diphenyl-1,3,5-hexatrienes. Medium Effect on Triplet and Singlet Contributions,” The Journal of Physical Chemistry A, Vol. 104, No. 48, 2000, pp. 11443-11450. doi:10.1021/jp002359f
[26] J. Saltiel, et al., “Photoisomerization of All-trans-1,6-Diphenyl-1,3,5-hexatriene. Temperature and Deuterium Isotope Effects,” The Journal of Physical Chemistry A, Vol. 107, No. 18, 2003, pp. 3178-3186. doi:10.1021/jp021540g
[27] J. Saltiel, et al., “Photoisomerization of All-cis-1,6-Diphenyl-1,3,5-hexatriene in the Solid State and in Solution: A Simultaneous Three-Bond Twist Process,” Angewandte Chemie International Edition, Vol. 48, No. 43, 2009, pp. 8082-8085. doi:10.1002/anie.200902724
[28] J. Catalan and J. L. G. de Paz, “On the Photophysics of All-trans-Polyenes: Hexatriene versus Octatetraene,” The Journal of Physical Chemistry, Vol. 124, No. 3, 2006, pp. 034306-11. doi:10.1063/1.2158992
[29] J. Catalan, “The Emission of α,ω-Diphenylpolyenes: A Model Involving Several Molecular Structures,” Chem. Phys., Vol. 335, No. 1, 2007, pp. 69-78. doi:10.1016/j.chemphys.2007.03.023
[30] A. M. Turek, et al., “Resolution of Three Fluorescence Components in the Spectra of All-trans-1,6-Diphenyl-1,3,5-hexatriene under Isopolarizability Conditions,” The Journal of Physical Chemistry A, Vol. 109, No. 2, 2005, pp. 293-303. doi:10.1021/jp045201u
[31] M. T. Allen and D. G. Whitten, “The Photophysics and Photochemistry of α,ω-Diphenylpolyene Singlet States,” Chem. Rev., Vol. 89, No. 8, 1989, pp. 1691-1702.
[32] J. C. del Valle, N. Tarkalanov, and J. Saltiel, “Distortion of the Fluorescence Spectrum of All-trans-1,6-Diphenyl-1,3,5-hexatriene with Increasing Laser Pulse Excitation Energies,” The Journal of Physical Chemistry B, Vol. 103, No. 43, 1999, pp. 9350-9355. doi:10.1021/jp991450k
[33] C. M. Marian and N. Gilka, “Performance of the Density Functional Theory/Multireference Configuration Interaction Method on Electronic Excitation of Extended p-Systems,” Journal of Chemical Theory and Computation, Vol. 4, No. 9, 2008, pp. 1501-1515. doi:10.1021/ct8001738
[34] A. Hager, “Ausbildung von Maxima im Absorptionsspektrum von Carotinoiden im Bereich um 370 nm; Folgen für die Interpretation Bestimmter Wirkungsspektren,” Planta, Vol. 91, No. 1, 1970, pp. 38-53. doi:10.1007/BF00390164
[35] A. V. Ruban, P. Horton, and A. J. Young, “Aggregation of Higher Plant Xanthophylls: Differences in Absorption Spectra and in the Dependency on Solvent Polarity,” Journal of Photochemistry and Photobiology B, Vol. 21, No. 2-3, 1993, pp. 229-234. doi:10.1016/1011-1344(93)80188-F
[36] S. K. Chattopadhyay, P. K. Das, and G. L. Hug, “Photoprocesses in Diphenylpolyenes. Oxygen and Heavy-Atom Enhancement of Triplet Yields,” Journal of the American Chemical Society, Vol. 104, No. 17, 1982, pp. 4507-4514. doi:10.1021/ja00381a001
[37] Z. Wang and W. G. McGimpsey, “Time-Resolved Evidence for Isomerization of Diphenylpolyene Cation Radicals in Solution,” The Journal of Physical Chemistry, Vol. 97, No. 13, 1993, pp. 3324-3327. doi:10.1021/j100115a038
[38] J. Saltiel and B. W. Atwater, “Spin-Statistical Factors in Diffusion-Controlled Reactions”, In: D. H. Volman, G.S. Hammond and K. Gollnick, Eds., Advances in Photochemistry, John Wiley & Sons, Inc., New York 1988, pp. 63-76.
[39] J. Saltiel, J. M. Crowder and S. Wang, “Mapping the Potential Energy Surfaces of the 1,6-Diphenyl-1,3,5-hexatriene Ground and Triplet States,” Journal of the American Chemical Society, Vol. 121, No. 5, 1999, pp. 895-902. doi:10.1021/ja982551j
[40] R. Bensasson, et al., “The Triplet State of 1,6-Diphenyl-1,3,5-hexatriene and 1,8-Diphenyl-1,3,5,7-octatetraene,” Chemical Physics Letters, Vol. 41, No. 2, 1976, pp. 333-335. doi:10.1016/0009-2614(76)80823-8
[41] M. Klessinger and E. Gunkel, “The Electronic Structure of Polyenes and Unsaturated Carbonyl Compounds,” Tetrahedron, Vol. 34, No. 24, 1978, pp. 3591-3598. doi:10.1016/0040-4020(78)88436-1
[42] K. C. Wu and A. M. Trozzolo, “Production of Singlet Molecular-Oxygen from the Oxygen Quenching of the Lowest Excited Singlet-State of Aromatic Molecules in n-Hexane Solution,” The Journal of Physical Chemistry, Vol. 83, No. 24, 1979, pp. 3180-3183. doi:10.1021/j100487a023
[43] J. T. Brownrigg and J. E. Kenny, “Fluorescence Intensities and Lifetimes of Aromatic Hydrocarbons in Cyclohexane Solution: Evidence of Contact Charge-Transfer Interactions with Oxygen,” The Journal of Physical Chemistry A, Vol. 113, No. 6, 2009, pp. 1049-1059. doi:10.1021/jp807495h
[44] R. Schmidt, “Photosensitized Generation of Singlet Oxygen,” Photochemistry and Photobiology, Vol. 82, No. 5, 2006, pp. 1161-1177. doi:10.1562/2006-03-03-IR-833
[45] C. Schweitzer and R. Schmidt, “Physical Mechanisms of Generation and Deactivation of Singlet Oxygen,” Chem. Rev., Vol. 103, No. 5, 2003, pp. 1685-1757. doi:10.1021/cr010371d
[46] E. A. Gooding, K. R. Serak and P. R. Ogilby, “Ground-State Benzene-Oxygen Complex,” The Journal of Physical Chemistry, Vol. 95, No. 20, 1991, pp. 7868-7871. doi:10.1021/j100173a058
[47] K. Kikuchi, et al., “New Aspects on Fluorescence Quenching by Molecular Oxygen,” Journal of the American Chemical Society, Vol. 115, No. 12, 1993, pp. 5180-5184. doi:10.1021/ja00065a033
[48] L. Rodríguez, et al., “Photophysical Study of Naphthalenophanes: Evidence of Adduct Formation with Molecular Oxygen,” The Journal of Physical Chemistry A, Vol. 115, No. 2, 2011, pp. 123-127. doi:10.1021/jp106887c
[49] T. Kamisuki and C. Hirose, “Photoionization Mechanism of α, ω-Diphenylpolyenes in Polar Solvents Investigated by Using Coherent Raman Spectroscopy,” Journal of Photochemistry and Photobiology A, Vol. 99, No. 1, 1996, pp. 13-21. doi:10.1016/1010-6030(96)04384-5
[50] S. Nath, D. K. Palit and A. V. Sapre, “Photoinduced Charge Transfer Interaction Between Fullerene[60] and Diphenylpolyenes in Solution: Evidence for Photocyclo-addition Reaction,” Chemical Physics Letters, Vol. 330, No. 3-4, 2000, pp. 255-261. doi:10.1016/S0009-2614(00)01070-8
[51] J. F. Ye, et al., “Excess Polarizabilities upon Excitation from the Ground State to the first Dipole-Allowed Excited State of Diphenylpolyenes,” Int. J. Quant. Chem., Vol. 107, No. 10, 2007, pp. 2006-2014.
[52] J. G. Calvert and J. N. Pitts Jr., “Photochemistry,” 2nd Edition, John Wiley & Sons, Inc., New York, 1966.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.